[1] J. Xu, L. Chen, H. Qu, Y. Jiao, J. Xie, G. Xing, Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4, Appl. Surf. Sci. 320(2014) 674-680. [2] A.H. Jawad, R.A. Rashid, K. Ismail, S. Sabar, High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue, Desalin. Water Treat. 74(2017) 326-335. [3] F. Marrakchi, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporousactivated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue, Int. J. Biol. Macromol. 98(2017) 233-239. [4] H. Jawad, Z.S. Mehdi, M.A.M. Ishak, K. Ismail, Large surface area activated carbon from low-rank coal via microwave-assisted KOH activation for methylene blue adsorption, Desalin. Water Treat. 110(2018) 239-249. [5] R. Acosta, V. Fierro, A.M. Yuso, D. Nabarlatz, A. Celzard, Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char, Chemosphere 149(2016) 168-176. [6] A.H. Jawad, N.F.H. Mamat, M.F. Abdullah, K. Ismail, Adsorption of methylene blue onto acid-treated mango peels:Kinetic, equilibrium and thermodynamic, Desalin. Water Treat. 59(2017) 210-219. [7] A.H. Jawad, S. Sabar, M.A.M. Ishak, L.D. Wilson, S.S.A. Norrahma, M.K. Talaria, A. M. Farhan, Microwave-assisted preparation of mesoporous-activated carbon from coconut (Cocos nucifera) leaf by H3PO4 activation for methylene blue adsorption, Chem. Eng. Commun. 204(10) (2017) 1143-1156. [8] R.A. Rashid, A.H. Jawad, M.A.M. Ishak, N.N. Kasim, FeCl3-activated carbon developed from coconut leaves:Characterization and application for methylene blue removal, Sains Malaysiana 47(3) (2018) 603-610. [9] M.J.P. Brito, C.M. Veloso, R.C.F. Bonomo, R.C.I. Fontan, L.S. Santos, K.A. Monteiro, Activated carbons preparation from yellow mombin fruit stones for lipase immobilization, Fuel Process. Technol. 156(2017) 421-428. [10] A.H. Jawad, R.A. Rashid, M.A.M. Ishak, L.D. Wilson, Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation:Kinetic, equilibrium and thermodynamic studies, Desalin. Water Treat. 57(2016) 25194-25206. [11] A.H. Jawad, S.A. Mohammed, M.S. Mastuli, M.F. Abdullah, Carbonization of corn (Zea mays) cob food residue by one-step chemical activation with sulfuric acid for methylene blue adsorption, Desalin. Water Treat. 118(2018) 342-351. [12] A.H. Jawad, R.A. Rashid, M.A.M. Ishak, K. Ismail, Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels, J. Taibah Univ. Sci. 12(6) (2018) 809-819. [13] R.A. Rashid, A.H. Jawad, M.A.M. Ishak, N.N. Kasim, KOH-activated carbon developed from biomass waste:Adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue uptake, Desalin. Water Treat. 57(2016) 27226-27236. [14] M. Hu, J. Reboul, S. Furukawa, L. Radhakrishnan, Y. Zhang, P. Srinivasu, H. Iwai, H. Wang, Y. Nemoto, N. Suzuki, S. Kitagawa, Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs), Chem. Commun. 47(2011) 8124-8126. [15] L. Radhakrishnan, J. Reboul, S. Furukawa, P. Srinivasu, S. Kitagawa, Y. Yamauchi, Preparation of microporous carbon fibers through carbonization of Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol, Chem. Mater. 23(2011) 1225-1231. [16] W. Chaikittisilp, N.L. Torad, C. Li, M. Imura, N. Suzuki, S. Ishihara, K. Ariga, Y. Yamauchi, Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks, Chem. Eur. J. 20(2014) 4217-4221. [17] W. Ao, J. Fu, X. Mao, Q. Kang, C. Ran, Y. Liu, H. Zhang, Z. Gao, J. Li, G. Liu, J. Dai, Microwave assisted preparation of activated carbon from biomass:A review, Renew. Sust. Energ. Rev. 92(2018) 958-979. [18] Q.S. Liu, T. Zheng, N. Li, P. Wang, G. Abulikemu, Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue, Appl. Surf. Sci. 256(2010) 3309-3315. [19] A.H. Jawad, M.A.M. Ishak, A.M. Farhan, K. Ismail, Response surface methodology approach for optimization of color removal and COD reduction of methylene blue using microwave-induced NaOH activated carbon from biomass waste, Desalin. Water Treat. 62(2017) 208-220. [20] X. Wang, X. Liang, Y. Wang, X. Wang, M. Liu, D. Yin, Y. Zhang, Adsorption of copper (Ⅱ) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation, Desalination 278(1-3) (2011) 231-237. [21] W. Francis Coal, Its Formation and Composition, 2nd ed., Edward Arnold, London, UK, 1961. [22] A.S. Azmi, S. Yusup, S. Muhamad, The influence of temperature on adsorption capacity of Malaysian coal, Chem. Eng. Process. 45(2006) 392-396. [23] S.S. Idris, N.A. Rahman, K. Ismail, Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA), Bioresour. Technol. 123(2012) 581-591. [24] C.S. Pei, Coal as an energy resource in Malaysia, Geot. Soc. Malaysia, Bulletin 33(1993) 399-410. [25] A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail, W.I. Nawawi, Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film, J. Taibah Univ. Sci. 10(2016) 352-362. [26] A.H. Jawad, A.F.M. Alkarkhi, N.S.A. Mubarak, Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation:Optimization using response surface methodology (RSM), Desalin. Water Treat. 56(2015) 161-172. [27] N.S.A. Mubarak, A.H. Jawad, W.I. Nawawi, Equilibrium, kinetic and thermodynamic studies of Reactive Red 120 dye adsorption by chitosan beads from aqueous solution, Energy Ecol. Environ. 2(2017) 85-93. [28] A.H. Jawad, M.A. Islam, B.H. Hameed, Cross-linked chitosan thin film coated onto glass plate as an effective adsorbent for adsorption of reactive orange 16, Int. J. Biol. Macromol. 95(2017) 743-749. [29] M.A. Jamaluddin, K. Ismail, M.A.M. Ishak, Z.A. Ghani, M.F. Abdullah, M.T.U. Safian, N.I.N. Hakimi Mohd, Microwave-assisted pyrolysis of palm kernel shell:Optimization using response surface methodology (RSM), Renew. Energy 55(2013) 357-365. [30] M. Ahmedna, W.E. Marshall, R.M. Rao, S.J. Clarke, Use of filtration and buffers in raw sugar colour measurements, J. Sci. Food Agric. 75(1) (1997) 109-116. [31] Lubrizol standard test method, Iodine value, test procedure AATM 1112-01 https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiLxeysMzKAhUGCY4KHV2PAi0QFggnMAE&url=https%3A%2F%2Fwww.lubrizol.com%2FWorkArea%2Flinkit.aspx%3FLinkIdentifier%3Did%26ItemID%3D5216&usg=AFQjCNFDJcbCej0Sb5Nlt2XzqMTQ_5-4xQ&bvm=bv.112766941,d.c2E, 2006. [32] ASTM Standard, Standard test method for total ash content of activated carbon, ASTM International West Conshohocken, 2011, PA, https://cds.cern.ch/record/519385?ln=en. [33] F.A. Adekola, H.I. Adegoke, Adsorption of blue-dye on activated carbons produced from rice husk, coconut shell and coconut coirpith, IFE J. Sci. 7(1) (2005) 151-157. [34] S.S. Idris, N.A. Rahman, K. Ismail, A.B. Alias, Z.A. Rashid, M.J. Aris, Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA), Bioresour. Technol. 101(2010) 4584-4592. [35] F. Kaouah, S. Boumaza, T. Berrama, M. Trari, Z. Bendjama, Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46, J. Clean. Prod. 54(2013) 296-306. [36] S. Gao, L. Ge, T.E. Rufford, Z. Zhu, The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2, Microporous Mesoporous Mater. 238(2017) 19-26. [37] J. Laine, A. Calafat, Factors affecting the preparation of activated carbons from coconut shell catalyzed by potassium, Carbon 29(7) (1991) 949-953. [38] M.D. Pavlović, A.V. Buntić, K.R. Mihajlovski, S.S. Šiler-Marinković, D.G. Antonović, Z. Radovanović, S.I. Dimitrijević-Branković, Rapid cationic dye adsorption on polyphenol-extracted coffee grounds-A response surface methodology approach, J. Taiwan Inst. Chem. Eng. 45(2014) 1691-1699. [39] M. Sanati, A. Andersson, DRIFT study of the oxidation and the ammoxidation of toluene over a TiO2 (B)-supported vanadia catalyst, J. Mol. Catal. 81(1993) 51-62. [40] A.H. Jawad, M.A. Nawi, M.H. Mohamed, L.D. Wilson, Oxidation of chitosan in solution by photocatalysis and product characterization, J. Polym. Environ. 25(2017) (2017) 828-835. [41] A.H. Jawad, M.A. Nawi, Characterizations of the photocatalytically-oxidized cross-linked chitosan-glutaraldehyde and its application as a sub-layer in the TiO2/CS-GLA bilayer photocatalyst system, J. Polym. Environ. 20(2012) 817-829. [42] J. Coates, Interpretation of infrared spectra, a practical approach, in:R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester, 2000, pp. 10815-10837. [43] M.A. Nawi, A.H. Jawad, S. Sabar, W.S.W. Ngah, Photocatalytic-oxidation of solid state chitosan by immobilized bilayer assembly of TiO2-chitosan under a compact household fluorescent lamp irradiation, Carbohydr. Polym. 83(2011) 1146-1152. [44] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57(1985) 603-619. [45] L.D. Wilson, M.H. Mohamed, J.V. Headley, Surface area and pore structure properties of b-cyclodextrin-urethane copolymer materials, J. Colloid Interface Sci. 357(2011) 215-222. [46] F. Fatieh, L. Dehabadi, L.D. Wilson, R. Besant, R. Evitts, C.J. Simonson, Sorption study of a starch biopolymer as an alternative dessicant for energy wheels, ACS Sustain. Chem. Eng. 4(3) (2016) 1262-1273. [47] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London, 1982, pp. 195-288. [48] K.S.W. Sing, R.T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials, Adsorpt. Sci. Technol. 22(2004) 773-782. [49] N.D. Hutson, Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite, Chem. Mater. 16(2004) 4135-4143. [50] T.M. Darweesh, M.J. Ahmed, Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation, Environ. Toxicol. Pharmacol. 50(2017) 159-166. [51] Y. Guo, K. Yu, Z. Wang, H. Xu, Effects of activation conditions on preparation of porous carbon from rice husk, Carbon 41(8) (2000) 1645-1687. [52] M.A. Islam, S. Sabar, A. Benhouri, W.A. Khanday, M. Asif, B.H. Hameed, Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption, J. Taiwan Inst. Chem. Eng. 74(2017) (2017) 96-104. [53] M. Song, B. Jin, R. Xiao, L. Yang, Y. Wu, Z. Zhong, Y. Huang, The comparison of two activation techniques to prepare activated carbon from corn cob, Biomass Bioenergy 48(2013) 250-256. [54] N. Yoshizawa, K. Maruyama, Y. Yamada, E. Ishikawa, M. Kobayashi, Y. Toda, M. Shiraishi, XRD evaluation of KOH activation process and influence of coal rank, Fuel 81(2002) (2002) 1717-1722. [55] A.H. Karoyo, L. Dehabadi, L.D. Wilson, Renewable starch particle carriers with switchable adsorption properties, ACS Sustain. Chem. Eng. 6(2018) 4603-4613. [56] S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe. K Sven Vetensk, Hand 24(1898) (1898) 1-39. [57] Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70(1998) 115-124. [58] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156(2010) 2-10. [59] M.A. Islam, A. Benhouria, M. Asif, B.H. Hameed, Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes, J. Taiwan Inst. Chem. Eng. 52(2015) 57-64. [60] V.O. Njoku, K.Y. Foo, M. Asif, B.H. Hameed, Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption, Chem. Eng. J. 250(2014) (2014) 198-204. [61] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40(1918) 1361-1403. [62] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57(1906) 385-471. [63] M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim. URSS 12(1940) 217-222. [64] K.Y. Foo, B.H. Hameed, Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation, Bioresour. Technol. 104(2012) 679-686. [65] K.Y. Foo, B.H. Hameed, Porous structure and adsorptive properties of pine apple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation, Microporous Mesoporous Mater. 148(2012) 191-195. [66] K.Y. Foo, B.H. Hameed, Coconut husk derived activated carbon via microwave induced activation:Effects of activation agents, preparation parameters and adsorption performance, Chem. Eng. J. 184(2012) 57-65. [67] K.Y. Foo, B.H. Hameed, Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside:Influence of operational parameters, Bioresour. Technol. 103(2012) 398-404. [68] M.J. Ahmed, S.K. Theydan, Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption, J. Anal. Appl. Pyrolysis 105(2014) 199-208. [69] K.Y. Foo, B.H. Hameed, Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation, Bioresour. Technol. 130(2013) 696-702. [70] K.Y. Foo, B.H. Hameed, Preparation of activated carbon from date stones by microwave induced chemical activation:Application for methylene blue adsorption, Chem. Eng. J. 170(2011) 338-341. [71] K.Y. Foo, B.H. Hameed, Microwave-assisted preparation of oil palm fibre activated carbon for methylene blue adsorption, Chem. Eng. J. 166(2011) 792-795. [72] H. Deng, G. Li, H. Yang, J. Tang, J. Tang, Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation, Chem. Eng. J. 163(2010) 373-381. [73] M.J. Ahmed, S.K. Theydan, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption, J. Anal. Appl. Pyrolysis 99(2013) 101-109. [74] G. Karaçetin, S. Sivrikaya, M. Imamoǧlu, Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, J. Anal. Appl. Pyrolysis 110(2014) 270-276. [75] K.E. Noll, Adsorption Technology for Air and Water Pollution Control, CRC Press, Boca Raton, 1991. [76] Z. Jia, Z. Li, S. Li, Y. Li, R. Zhu, Adsorption performance and mechanism of methylene blue on chemically activated carbon spheres derived from hydrothermally-prepared poly(vinyl alcohol) microspheres, J. Mol. Liq. 220(2016) 56-62. [77] L. Aia, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng, J. Jiang, Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube:Kinetic, isotherm and mechanism analysis, J. Hazard. Mater. 198(2011) 282-290. [78] Z. Zhang, X. Xu, Wrapping carbon nanotubes with poly (sodium 4-styrenesulfonate) for enhanced adsorption of methylene blue and its mechanism, Chem. Eng. J. 256(2014) 85-92. |