[1] G. George, N. Bhoria, S. AlHallaq, A. Abdala, V. Mittal, Polymer membranes for acid gas removal from natural gas, Sep. Sci. Technol. 158(2016) 333-356. [2] E. Adatoz, A.K. Avci, S. Keskin, Opportunities and challenges of MOF-based membranes in gas separations, Sep. Sci. Technol. 152(2015) 207-237. [3] M. Rezakazemi, A.E. Amooghin, M.M. Montazer-Rahmatia, A.F. Ismail, T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs):An overview on current status and future directions, Prog. Polym. Sci. 39(2014) 817-861. [4] L. Li, C. Song, H. Jiang, J. Qiu, T. Wang, Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer, J. Membr. Sci. 450(2014) 469-477. [5] S. Kim, Y.M. Lee, High performance polymer membranes for CO2 separation, Curr. Opin. Chem. Eng. 2(2013) 238-244. [6] P. Luis, T.V. Gerven, B.V. der Bruggen, Recent developments in membranebased technologies for CO2 capture, Prog. Energy Combust. 38(2012) 419-448. [7] P. Li, Z. Wang, Z. Qiao, Y. Liu, X. Cao, W. Li, J. Wang, S. Wang, Recent developments in membranes for efficient hydrogen purification, J. Membr. Sci. 495(2015) 130-168. [8] W. He, Z. Wang, W. Li, S. Li, Z. Bai, J. Wang, S. Wang, Cyclic tertiary amino group containing fixed carrier membranes for CO2 separation, J. Membr. Sci. 476(2015) 171-181. [9] C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel 96(2012) 15-28. [10] A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci. 359(2010) 115-125. [11] R.W. Baker, B.T. Low, Gas separation membrane materials:A perspective, Macromolecules 47(2014) 6999-7013. [12] Z. Dai, H. Aboukeila, L. Ansaloni, J. Deng, M.G. Baschetti, L. Deng, Nafion/PEG hybrid membrane for CO2 separation:Effect of PEG on membrane microstructure and performance, Sep. Sci. Technol. 214(2019) 67-77. [13] Y. Liu, Z. Wang, S. Zhao, X. Cao, N. Li, J. Wang, S. Wang, Hydrothermal pretreatment:A simple method for dry substrate membrane regeneration, Sep. Sci. Technol. 199(2018) 152-160. [14] Z. Tong, W.S.W. Ho, New sterically hindered polyvinylamine membranes for CO2 separation and capture, J. Membr. Sci. 543(2017) 202-211. [15] Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, S. Wang, PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation, AIChE J. 59(2013) 215-228. [16] S. Li, Z. Wang, X. Yu, J. Wang, S. Wang, High-performance membranes with multi-permselectivity for CO2 separation, Adv. Mater. 24(2012) 3196-3200. [17] Y. Zhang, H. Wang, Y. Zhang, X. Ding, J. Liu, Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2/N2 separation, Sep. Sci. Technol. 189(2017) 128-137. [18] J. Kim, Q. Fu, K. Xie, J.M.P. Scofield, S.E. Kentish, G.G. Qiao, CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture, J. Membr. Sci. 515(2018) 54-62. [19] L. Zhu, M. Yavari, W. Jia, E.P. Furlani, H. Lin, Geometric restriction of gas permeance in ultrathin film composite membranes evaluated using an integrated experimental and modeling approach, Ind. Eng. Chem. Res. 56(2016) 351-358. [20] G.Z. Ramon, M.C.Y. Wong, E.M.V. Hoek, Transport through composite membrane, part 1:is there an optimal support membrane?, J Membr. Sci. 415-416(2012) 298-305. [21] P. Li, H.Z. Chen, T.-S. Chung, The effects of substrate characteristics and prewetting agents on PAN-PDMS composite hollow fiber membranes for CO2/N2 and O2/N2 separation, J. Membr. Sci. 434(2013) 18-25. [22] H.Z. Chen, Y.C. Xiao, T.S. Chung, Multi-layer composite hollow fiber membranes derived from poly(ethylene glycol) (PEG) containing hybrid materials for CO2/N2 separation, J. Membr. Sci. 381(2011) 211-220. [23] A. Ghadimia, S. Norouzbahari, H. Lin, H. Rabiee, B. Sadatnia, Geometric restriction of microporous supports on gas permeance efficiency of thin film composite membranes, J. Membr. Sci. 563(2018) 643-654. [24] D. Wu, L. Zhao, V.K. Vakharia, W. Salim, W.S.W. Ho, Synthesis and characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO2 separation:From lab to pilot scale, J. Membr. Sci. 510(2016) 58-71. [25] L. Zhu, W. Jia, M. Kattula, K. Ponnuru, E.P. Furlani, H. Lin, Effect of porous supports on the permeance of thin film composite membranes:Part I. Tracketched polycarbonate supports, J. Membr. Sci. 514(2016) 684-695. [26] M. Kattula, K. Ponnuru, L. Zhu, W. Jia, H. Lin, E.P. Furlani, Designing ultrathin film composite membranes:The impact of a gutter layer, Sci. Rep. 5(2015) 15016. [27] J.G. Wijmans, P. Hao, Influence of the porous support on diffusion in composite membranes, J. Membr. Sci. 494(2015) 78-85. [28] Jay M.S. Henis, Mary K. Tripodi, Composite hollow fiber membranes for gas separation:The resistance model approach, J. Membr. Sci. 8(1981) 233-246. [29] K.X. Shuai Liang, Shuang Zhang, Zhibo Ma, Lu Peng, Hongjie Wang, Xia Huang, A facile approach to fabrication of superhydrophilic ultrafiltration membranes with surface-tailored nanoparticles, Sep. Sci. Technol. 203(2018) 251-259. [30] G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation:A review, Ind. Eng. Chem. Res. 50(2011) 3798-3817. [31] C. Emin, E. Kurnia, I. Katalia, M. Ulbricht, Polyarylsulfone-based blend ultrafiltration membranes with combined size and charge selectivity for protein separation, Sep. Sci. Technol. 193(2018) 127-138. [32] P. Li, Z. Wang, W. Li, Y. Liu, J. Wang, S. Wang, High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation, ACS Appl. Mater. Interfaces 7(2015) 15481-15493. [33] T.-J. Kim, B. Li, M.-B. Hägg, Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture, J. Polym. Sci. B Polym. Phys. 42(2004) 4326-4336. [34] W. Yave, A. Car, K.-V. Peinemann, Nanostructured membrane material designed for carbon dioxide separation, J. Membr. Sci. 350(2010) 124-129. [35] Y. Chen, B. Wang, L. Zhao, P. Dutta, W.S. Winston Ho, New Pebax/zeolite Y composite membranes for CO2 capture from flue gas, J. Membr. Sci. 495(2015) 415-423. [36] S. Yuan, Z. Wang, Z. Qiao, M. Wang, J. Wang, S. Wang, Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine, J. Membr. Sci. 378(2011) 425-437. [37] L. Huang, J.R. McCutcheon, Impact of support layer pore size on performance of thin film composite membranes for forward osmosis, J. Membr. Sci. 483(2015) 25-33. [38] N. Misdan, W.J. Lau, A.F. Ismail, T. Matsuura, Formation of thin film composite nanofiltration membrane:Effect of polysulfone substrate characteristics, Desalination 329(2013) 9-18. [39] S. Zhao, Z. Wang, X. Wei, B. Zhao, J. Wang, S. Yang, S. Wang, Performance improvementofpolysulfoneultrafiltrationmembraneusingPANiEBasbothpore forming agent and hydrophilic modifier, J. Membr. Sci. 385-386(2011) 251-262. [40] A. Tiraferri, N.Y. Yip, W.A. Phillip, J.D. Schiffman, M. Elimelech, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci. 367(2011) 340-352. [41] I. Masselin, L.D. Bourlier, J.M. Laine, P.Y. Sizaret, X. Chasseray, D. Lemordant, Membrane characterization using microscopic image analysis, J. Membr. Sci. 186(2001) 85-96. [42] G.R. Guillen, T.P. Farrell, R.B. Kaner, E.M.V. Hoek, Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline-polysulfone ultrafiltration membranes, J. Mater. Chem. 20(2010) 4621. [43] X. Yu, Z. Wang, Z. Wei, S. Yuan, J. Zhao, J. Wang, S. Wang, Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture, J. Membr. Sci. 362(2010) 265-278. [44] V. Vakharia, W. Salim, D. Wu, Y. Han, Y. Chen, L. Zhao, W.S.W. Ho, Scale-up of amine-containing thin-film composite membranes for CO2 capture from flue gas, J. Membr. Sci. 555(2018) 379-387. [45] D.G.D. Venturi, L. Sisti, M.G. Baschetti, Effect of humidity and nanocellulose content on Polyvinylamine-nanocellulose hybrid membranes for CO2 capture, J. Membr. Sci. 548(2018) 263-274. [46] C. Zhang, Z. Wang, Y. Cai, C. Yi, D. Yang, S. Yuan, Investigation of gas permeation behavior in facilitated transport membranes:Relationship between gas permeance and partial pressure, Chem. Eng. J. 225(2013) 744-751. [47] J.R.Y. Qiu, D. Zhao, H. Li, K. Hua, X. Lia, M. Deng, Blend membranes of poly (amide-6-b-ethylene oxide)/[Emim] [PF6] for CO2 separation, Sep. Purif. Technol. 179(2017) 309-319. [48] J.C.J.P. Bernardo, F. Bazzarellia, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kačírková, G. Clariziaa, Gas transport properties of Pebax/room temperature ionic liquid gel membranes, Sep. Purif. Technol. 97(2012) 73-82. [49] A.F. Ismail, W. Lorna, Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane, Sep. Purif. Technol. 27(2002) 173-194. [50] R.D. Noble, Generalized microscopic mechanism of facilitated transport in fixed site carrier membranes, J. Membr. Sci. 75(1992) 121-129. [51] W.R. Vieth, J.M. Howell, J.H. Hsieh, Dual sorption theory, J. Membr. Sci. 1(1976) 177-220. [52] C.C. Hu, C.S. Chang, R.C. Ruaan, J.Y. Lai, Effect of free volume and sorption on membrane gas transport, J. Membr. Sci. 226(2003) 51-61. [53] D.R. Paul, W.J. Koros, Effect of partially immobilizing sorption on permeability and the diffusion time lag, J. Polym. Sci. Polym. Phys. Ed. 14(1976) 675-685. [54] D.R. Paul, W.J. Koros, Transient and steady-state permeation in poly(ethylene terephthlate) above and below the glass transition, J. Polym. Sci. Polym. Phys. Ed. 16(1978) 2171-2187. [55] Mary M. Caruso, D.A. Davis, Q. Shen, Susan A. Odom, Nancy R. Sottos, Scott R. White, Jeffrey S. Moore, Mechanically-induced chemical changes in polymeric materials, Chem. Rev. 109(2009) 5755-5798. [56] S. Goyanes, G. Rubiolo, W. Salgueiro, A. Somoza, On the free volume evolution in a deformed epoxy composite. A positron annihilation study, Polymer 46(2005) 9081-9087. [57] B.W.C.L. Wang, S.Q. Li, S.J. Wang, Effects of deformation on the microstructure of PTFE polymer studied by positron annihilation, J. Phys. Condens. Matter 5(1993) 7515-7520. [58] O.A. Hasan, M.C. Boyce, X.S. Li, S. Berko, An investigation of the yield and postyield behavior and corresponding structure of poly(methyl methacrylate), J. Polym. Sci. Polym. Phys. Ed. 31(1993) 185-197. [59] B. Frank, A.P. Gast, Polymer mobility in thin films, Macromolecules 29(1996) 6531-6534. [60] Eric K. Lin, R. Kolb, Sushil K. Satija, W.l. Wu, Reduced polymer mobility near the polymer solid interface as measured by neutron reflectivity, Macromolecules 32(1999) 3753-3757. [61] Y. Yang, M.M.C. Cheng, X. Hu, D. Liu, R.J. Goyette, L.J. Lee, M. Ferrari, Lowpressure carbon dioxide enhanced polymer chain mobility below the bulk glass transition temperature, Macromolecules 40(2007) 1108-1111. [62] K. Tanaka, Y. Tateishi, Y. Okada, T. Nagamura, M. Doi, H. Morita, Interfacial mobility of polymers on inorganic solids, J. Phys. Chem. B 113(2009) 4571-4577. [63] P.Z. Hanakata, J.F. Douglas, F.W. Starr, Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films, Nat. Commun. 5(2014) 4163. [64] J. Weber, M. Antonietti, A. Thomas, Microporous networks of highperformance polymers:Elastic deformations and gas sorption properties, Macromolecules 41(2008) 2880-2885. [65] C. Zhou, The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging, J. Membr. Sci. 225(2003) 125-134. [66] F.M.Capaldi,M.C.Boyce,G.C.Rutledge,Enhancedmobilityaccompaniestheactive deformation of a glassy amorphous polymer, Phys. Rev. Lett. 89(2002) 175505. [67] N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol. 44(2010) 3812-3818. [68] M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Springer, Berlin, 1991. [69] P. van de Witte, P.J. Dijkstra, J.W.A. van den Berg, J. Feijen, Phase separation processes in polymer solutions in relation to membrane formation, J. Membr. Sci. 117(1996) 1-31. [70] D.B. Mosqueda-Jimenez, R.M. Narbaitz, T. Matsuura, G. Chowdhury, G. Pleizier, J.P. Santerre, Influence of processing conditions on the properties of ultrafiltration membranes, J. Membr. Sci. 231(2004) 209-224. [71] A.K. Hołd, I.F.J. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes, J. Appl. Polym. Sci. 132(2015) 1-17. [72] F. Yuan, Z. Wang, S. Li, J. Wang, S. Wang, Formation-structure-performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation, J. Membr. Sci. 421-422(2012) 327-341. [73] P. Li, Z. Wang, Y. Liu, S. Zhao, J. Wang, S. Wang, A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances, J. Membr. Sci. 476(2015) 243-255. [74] H. Lin, E.V. Wagner, B.D. Freeman, L.G. Toy, R.P. Gupta, Plasticization-enhanced hydrogen purification usingpolymeric membranes, Science 311(2006) 639-642. [75] T. Visser, N. Masetto, M. Wessling, Materials dependence of mixed gas plasticizationbehaviorinasymmetricmembranes,J.Membr. Sci.306(2007)16-28. [76] S. Li, H. Zhang, S. Yu, J. Hou, S. Huang, Y. Liu, Pore structure characterization and gas transport property of the penetrating layer in composite membranes, Sep. Purif. Technol. 211(2019) 252-258. |