中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (9): 2026-2036.DOI: 10.1016/j.cjche.2019.01.005
• Special Issue on Natural Gas Hydrate • 上一篇 下一篇
Zhenyuan Yin1,2, Praveen Linga1
收稿日期:
2018-11-21
修回日期:
2018-12-16
出版日期:
2019-09-28
发布日期:
2019-12-04
通讯作者:
Praveen Linga
Zhenyuan Yin1,2, Praveen Linga1
Received:
2018-11-21
Revised:
2018-12-16
Online:
2019-09-28
Published:
2019-12-04
Contact:
Praveen Linga
摘要: Natural gas has been considered as the best transition fuel into the future carbon constraint world. The ever-increasing demand for natural gas has prompted expanding research and development activities worldwide for exploring methane hydrates as a future energy resource. With its vast global resource volume (~3000 trillion cubic meter CH4) and high energy storage capacity (170 CH4 v/v methane hydrate), recovering energy from naturally-occurring methane hydrate has attracted both academic and industry interests to demonstrate the technical feasibility and economic viability. In this review paper, we highlight the recent advances in fundamental researches, seminal discoveries and implications from ongoing drilling programs and field production tests, the impending knowledge gaps and the future perspectives of recovering energy from methane hydrates. We further emphasize the current scientific, technological and economic challenges in realizing long-term commercial gas production from methane hydrate reservoir. The continuous growth of the corresponding experimental studies in China should target these specific challenges to narrow the knowledge gaps between laboratory-scale investigations and reservoir-scale applications. Furthermore, we briefly discuss both the environmental and geomechanical issues related to exploiting methane hydrate as the future energy resource and believe that they should be of paramount importance in the future development of novel gas production technologies.
Zhenyuan Yin, Praveen Linga. Methane hydrates: A future clean energy resource[J]. 中国化学工程学报, 2019, 27(9): 2026-2036.
Zhenyuan Yin, Praveen Linga. Methane hydrates: A future clean energy resource[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2026-2036.
[1] World Energy Outlook, International Energy Agency, 2017. [2] Y.F. Makogon, Hydrates of Hydrocarbon, PennWell Publishing Company, USA, 1997. [3] E.D. Sloan Jr., Fundamental principles and applications of natural gas hydrates, Nature 426(2003) 353. [4] J.A. Ripmeester, C.I. Ratcliffe, Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates:structure, cage occupancy, and hydration number, J. Phys. Chem. 92(1988) 337-339. [5] K.A. Udachin, H. Lu, G.D. Enright, C.I. Ratcliffe, J.A. Ripmeester, N.R. Chapman, et al., Single crystals of naturally occurring gas hydrates:The structures of methane and mixed hydrocarbon hydrates, Angew. Chem. Int. Ed. 46(2007) 8220-8222. [6] Y.P. Handa, A calorimetric study of naturally occurring gas hydrates, Ind. Eng. Chem. Res. 27(1988) 872-874. [7] C.A. Koh, Towards a fundamental understanding of natural gas hydrates, Chem. Soc. Rev. 31(2002) 157-167. [8] A.V. Milkov, Global estimates of hydrate-bound gas in marine sediments:How much is really out there? Earth Sci. Rev. 66(2004) 183-197. [9] B. Buffett, D. Archer, Global inventory of methane clathrate:Sensitivity to changes in the deep ocean, Earth Planet. Sci. Lett. 227(2004) 185-199. [10] J.B. Klauda, S.I. Sandler, Global distribution of methane hydrate in ocean sediment, Energy Fuel 19(2005) 459-470. [11] B.A. Buffett, O.Y. Zatsepina, Formation of gas hydrate from dissolved gas in natural porous media, Mar. Geol. 164(2000) 69-77. [12] B.A. Buffett, Clathrate hydrates, Annu. Rev. Earth Planet. Sci. 28(2000) 477-507. [13] R. Boswell, T.S. Collett, Current perspectives on gas hydrate resources, Energy Environ. Sci. 4(2011) 1206-1215. [14] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.-S. Li, Review of natural gas hydrates as an energy resource:Prospects and challenges, Appl. Energy 162(2016) 1633-1652. [15] R. Boswell, T. Collett, The gas hydrates resource pyramid, Fire in the Ice, National Energy Technology Laboratory, 6, 2006, pp. 1-4. [16] G.J. Moridis, T.S. Collett, R. Boswell, M. Kurihara, M.T. Reagan, C. Koh, et al., Toward Production From Gas Hydrates:Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential, SPE Reserv. Eval. Eng. 12(2009) 745-771. [17] Y. Song, L. Yang, J. Zhao, W. Liu, M. Yang, Y. Li, et al., The status of natural gas hydrate research in China:A review, Renew. Sustain. Energy Rev. 31(2014) 778-791. [18] T.-M. Guo, B.-H. Wu, Y.-H. Zhu, S.-S. Fan, G.-J. Chen, A review on the gas hydrate research in China, J. Pet. Sci. Eng. 41(2004) 11-20. [19] Z. Lin, H. Pan, H. Fang, W. Gao, D. Liu, High-altitude well log evaluation of a permafrost gas hydrate reservoir in the Muli area of Qinghai, China, Sci. Rep. 8(2018) 12596. [20] X. Zhao, J. Deng, J. Li, C. Lu, J. Song, Gas hydrate formation and its accumulation potential in Mohe permafrost, China, Mar. Pet. Geol. 35(2012) 166-175. [21] N.Y. Wu, H.Q. Zhang, X. Su, S.X. Yang, G. Zhang, J.Q. Liang, et al., High concentrations of hydrate in disseminated forms found in very fine-grained sediments of Shenhu area, South China Sea, Terra Nostra 1-2(2007) 236-237. [22] N.Y. Wu, S.X. Yang, H.Q. Zhang, J.Q. Liang, H.B. Wang, X. Su, et al., Preliminary discussion on gas hydrate reservoir system of Shenhu Area, North Slope of South China Sea, The 6th International Conference on Gas Hydrate. Vancouver, British Columbia, Canada, 2008. [23] N.Y. Wu, H.Q. Zhang, S.X. Yang, J.Q. Liang, H.B. Wang, Preliminary discussion on Natural Gas Hydrate (NGH) reservoir system of Shenhu area, north slope of South China Sea, Nat. Gas Ind. 27(2007) 1-6. [24] Z. Tan, G. Pan, P. Liu, Focus on the development of natural gas hydrate in China, Sustainability 8(2016) 520. [25] X. Wang, L. Pan, H.C. Lau, M. Zhang, L. Li, Q. Zhou, Reservoir volume of gas hydrate stability zones in permafrost regions of China, Appl. Energy 225(2018) 486-500. [26] W.F. Waite, C.D. Ruppel, T.S. Collett, P. Schultheiss, M. Holland, K.M. Shukla, et al., Multi-measurement approach for establishing the base of gas hydrate occurrence in the Krishna-Godavari Basin for sites cored during expedition NGHP-02 in the offshore of India, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.07.026. [27] R. Boswell, J. Yoneda, W.F. Waite, India national gas hydrate program expedition 02 summary of scientific results:Evaluation of natural gas-hydratebearing pressure cores, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.10.020. [28] J. Yoneda, M. Oshima, M. Kida, A. Kato, Y. Konno, Y. Jin, et al., Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.07.006. [29] J. Jang, S. Dai, J. Yoneda, W.F. Waite, L.A. Stern, L.-G. Boze, et al., Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate-bearing reservoirs in the Krishna-Godavari Basin, offshore India, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.08.015. [30] Y. Konno, A. Kato, J. Yoneda, M. Oshima, M. Kida, Y. Jin, et al., Numerical analysis of gas production potential from a gas-hydrate reservoir at site NGHP-02-16, the Krishna-Godavari Basin, offshore India-Feasibility of depressurization method for ultra-deepwater environment, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.08.001. [31] H.Q. Zhang, S.X. Yang, N.Y. Wu, X. Xu, M. Holland, P. Schultheiss, et al., Successful and surprising results for China's first gas hydrate drilling expedition, Fire in the Ice, National Energy Technology Laboratory, 2007. [32] G. Zhang, S. Yang, M. Zhang, J. Liang, J. Lu, M. Holland, et al., GMGS2 expedition investigates rich and complex gas hydrate environment in the South China Sea, Fire in the Ice, Methane Hydrate Newsletter, National Energy Technology Laboratory, 2014. [33] S. Yang, M. Zhang, J. Liang, J. Lu, Z. Zhang, M. Holland, et al., Preliminary results of china's third gas hydrate drilling expedition:A critical step from discovery to development in the South China Sea, Fire in the Ice, Methane Hydrate Newsletter, National Energy Technology Laboratory 2015, pp. 1-5. [34] S. Yang, J. Liang, Y. Lei, Y. Gong, H. Xu, H. Wang, et al., GMGS4 gas hydrate drilling expedition in the South China Sea, Fire in the ice, Methane Hydrate News, National Energy Technology Laboratory 2017, pp. 7-11. [35] J. Wei, Y. Fang, H. Lu, H. Lu, J. Lu, J. Liang, et al., Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea, Mar. Pet. Geol. 98(2018) 622-628. [36] C. Liu, Q. Meng, X. He, C. Li, Y. Ye, G. Zhang, et al., Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea, Mar. Pet. Geol. 61(2015) 14-21. [37] C. Liu, Y. Ye, Q. Meng, X. He, H. Lu, J. Zhang, et al., The characteristics of gas hydrates recovered from shenhu area in the South China Sea, Mar. Geol. 307-310(2012) 22-27. [38] S. Yang, Y. Lei, J. Liang, M. Holland, P. Schultheiss, Concentrated gas hydrate in the shenhu area, south China sea:Results from drilling expeditions GMGS3& GMGS4, Proceedings of the 9th International Conference on Gas Hydrates. Denver, 2017. [39] H. Lee, Y. Seo, Y.T. Seo, I.L. Moudrakovski, J.A. Ripmeester, Recovering methane from solid methane hydrate with carbon dioxide, Angew. Chem. Int. Ed. 42(2003) 5048-5051. [40] Y. Song, H. Zhou, S. Ma, W. Liu, M. Yang, CO2 sequestration in depleted methane hydrate deposits with excess water, Int. J. Energy Res. 42(2018) 2536-2547. [41] P.G. Brewer, G. Friederich, E.T. Peltzer, F.M. Orr, Direct experiments on the ocean disposal of fossil fuel CO2, Science 284(1999) 943-945. [42] G. Moridis, T.S. Collett, M. Pooladi-Darvish, S.H. Hancock, C. Santamarina, R. Boswell, et al., Challenges, Uncertainties, and Issues Facing Gas Production From Gas-Hydrate Deposits, SPE Reserv. Eval. Eng. (2011) https://doi.org/10.2118/131792-PA. [43] Y. Konno, T. Fujii, A. Sato, K. Akamine, M. Naiki, Y. Masuda, et al., Key findings of the World's first offshore methane hydrate production test off the coast of Japan:Toward future commercial production, Energy Fuel 31(2017) 2607-2616. [44] G.-J. Chen, T.-M. Guo, A new approach to gas hydrate modelling, Chem. Eng. J. 71(1998) 145-151. [45] A.H. Mohammadi, D. Richon, Methane hydrate phase equilibrium in the presence of salt (NaCl, KCl, or CaCl2)+ethylene glycol or salt (NaCl, KCl, or CaCl2)+methanol aqueous solution:Experimental determination of dissociation condition, J. Chem. Thermodyn. 41(2009) 1374-1377. [46] W.F. Waite, J.C. Santamarina, D.D. Cortes, B. Dugan, D.N. Espinoza, J. Germaine, et al., Physical properties of hydrate-bearing sediments, Rev. Geophys. 47(2009). [47] Z. Yin, M. Khurana, H.K. Tan, P. Linga, A review of gas hydrate growth kinetic models, Chem. Eng. J. 342(2018) 9-29. [48] Z.R. Chong, Z. Yin, J.H.C. Tan, P. Linga, Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach, Appl. Energy 204(2017) 1513-1525. [49] G. Li, X.-S. Li, B. Yang, L.-P. Duan, N.-S. Huang, Y. Zhang, et al., The use of dual horizontal wells in gas production from hydrate accumulations, Appl. Energy 112(2013) 1303-1310. [50] J.-C. Feng, Y. Wang, X.-S. Li, G. Li, Y. Zhang, Z.-Y. Chen, Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator, Appl. Energy 145(2015) 69-79. [51] Y. Song, L. Zhang, Q. Lv, M. Yang, Z. Ling, J. Zhao, Assessment of gas production from natural gas hydrate using depressurization, thermal stimulation and combined methods, RSC Adv. 6(2016) 47357-47367. [52] M. Priegnitz, J. Thaler, E. Spangenberg, J.M. Schicks, J. Schrötter, S. Abendroth, Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data, Geophys. J. Int. 202(2015) 1599-1612. [53] K.U. Heeschen, S. Abendroth, M. Priegnitz, E. Spangenberg, J. Thaler, J.M. Schicks, Gas production from methane hydrate:A laboratory simulation of the multistage depressurization test in Mallik, Northwest Territories, Canada, Energy Fuel 30(2016) 6210-6219. [54] P. Linga, C. Haligva, S.C. Nam, J.A. Ripmeester, P. Englezos, Recovery of methane from hydrate formed in a variable volume bed of silica sand particles, Energy Fuel 23(2009) 5508-5516. [55] Y. Wang, X.-S. Li, G. Li, Y. Zhang, B. Li, J.-C. Feng, A three-dimensional study on methane hydrate decomposition with different methods using five-spot well, Appl. Energy 112(2013) 83-92. [56] Z.R. Chong, J.W.R. Moh, Z. Yin, J. Zhao, P. Linga, Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments, Appl. Energy 229(2018) 637-647. [57] N. Li, Z.-F. Sun, C.-Y. Sun, P. Li, G.-J. Chen, Q.-L. Ma, et al., Simulating natural hydrate formation and accumulation in sediments from dissolved methane using a large three-dimensional simulator, Fuel 216(2018) 612-620. [58] Y.-F. Sun, J.-R. Zhong, W.-Z. Li, Y.-M. Ma, R. Li, T. Zhu, et al., Methane recovery from hydrate-bearing sediments by the combination of ethylene glycol injection and depressurization, Energy Fuel 32(2018) 7585-7594. [59] L.-T. Chen, N. Li, C.-Y. Sun, G.-J. Chen, C.A. Koh, B.-J. Sun, Hydrate formation in sediments from free gas using a one-dimensional visual simulator, Fuel 197(2017) 298-309. [60] T.J. Kneafsey, G.J. Moridis, X-ray computed tomography examination and comparison of gas hydrate dissociation in NGHP-01 expedition (India) and Mount Elbert (Alaska) sediment cores:Experimental observations and numerical modeling, Mar. Pet. Geol. 58(2014) 526-539. [61] Y. Seol, T.J. Kneafsey, X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand, J. Pet. Sci. Eng. 66(2009) 121-132. [62] M. Cha, K. Shin, H. Lee, I.L. Moudrakovski, J.A. Ripmeester, Y. Seo, Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy, Environ. Sci. Technol. 49(2015) 1964-1971. [63] B.A. Baldwin, A. Moradi-Araghi, J.C. Stevens, Monitoring hydrate formation and dissociation in sandstone and bulk with magnetic resonance imaging, Magn. Reson. Imaging 21(2003) 1061-1069. [64] M. Yang, Z. Fu, L. Jiang, Y. Song, Gas recovery from depressurized methane hydrate deposits with different water saturations, Appl. Energy 187(2017) 180-188. [65] Z. Yin, G. Moridis, H.K. Tan, P. Linga, Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium, Appl. Energy 220(2018) 681-704. [66] X. Liu, P.B. Flemings, Dynamic multiphase flow model of hydrate formation in marine sediments, J. Geophys. Res. Solid Earth 112(2007), B03101. [67] P. Englezos, N. Kalogerakis, P.D. Dholabhai, P.R. Bishnoi, Kinetics of formation of methane and ethane gas hydrates, Chem. Eng. Sci. 42(1987) 2647-2658. [68] X. Sun, K.K. Mohanty, Kinetic simulation of methane hydrate formation and dissociation in porous MSedia, Chem. Eng. Sci. 61(2006) 3476-3495. [69] K. You, P.B. Flemings, Methane hydrate formation in thick sand reservoirs:1. Shortrange methane diffusion, Mar. Pet. Geol. 89(2018) 428-442. [70] M. Selim, E. Sloan, Modeling of the dissociation of an in-situ hydrate, SPE California Regional Meeting, Society of Petroleum Engineers, 1985. [71] M.H. Yousif, H.H. Abass, M.S. Selim, E.D. Sloan, Experimental and Theoretical Investigation of Methane-Gas-Hydrate Dissociation in Porous Media, SPE Reserv. Eval. Eng. 6(1991) 69-76. [72] H.N. Hong, M. Pooladi-Darvish, A Numerical Study on Gas Production From Formations Containing Gas Hydrates, Petroleum Society of Canada, 2005. [73] Z. Yin, Z.R. Chong, H.K. Tan, P. Linga, Review of gas hydrate dissociation kinetic models for energy recovery, J. Nat. Gas Sci. Eng. 35(2016) 1362-1387. [74] M. Khurana, Z. Yin, P. Linga, A review of clathrate hydrate nucleation, ACS Sustain. Chem. Eng. 5(2017) 11176-11203. [75] L.-G. Tang, X.-S. Li, Z.-P. Feng, G. Li, S.-S. Fan, Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs, Energy Fuel 21(2007) 227-233. [76] G.J. Moridis, User's Manual of the TOUGH+ Core Code v1. 5:A General-Purpose Simulator of Non-isothermal Flow and Transport through Porous and Fractured Media. LBNL 6871E, Lawrence Berkeley National Laboratory, Berkeley, California, USA, 2014. [77] G.J. Moridis, User's manual for the hydrate v1.5 option of TOUGH+ v1.5:A code for the simulation of system behavior in hydratebearing geologic media. LBNL-6869E, Lawrence Berkeley National Laboratory, Berkeley, California, USA, 2014. [78] M. Kurihara, A. Sato, H. Ouchi, H. Narita, T. Ebinuma, K. Suzuki, et al., Prediction of Production Test Performances in Eastern Nankai Trough Methane Hydrate Reservoirs Using 3D Reservoir Model, Offshore Technology Conference, Houston, Texas, 2010. [79] M.D. White, STOMP-HYDT-KE A Numerical Simulator for the Production of Natural Gas Hydrate Using Guest Molecule Exchange with CO2 and N2, Washington Pacific Northwest National Laboratory, Richland, 2012. [80] J.M. Schicks, E. Spangenberg, R. Giese, B. Steinhauer, J. Klump, M. Luzi, New approaches for the production of hydrocarbons from hydrate bearing sediments, Energies 4(2011) 151. [81] J.W. Wilder, G.J. Moridis, S.J. Wilson, M. Kurihara, M.D. White, Y. Masuda, et al., An international effort to compare gas hydrate reservoir simulators, 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, CANADA, 2008. [82] J. Rutqvist, G.J. Moridis, L. Berkeley, Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments, Offshore Technology Conference, Houston, Texas, USA, OTC, 200718860. [83] J. Rutqvist, G.J. Moridis, T. Grover, T. Collett, Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production, J. Pet. Sci. Eng. 67(2009) 1-12. [84] J. Kim, G. Moridis, D. Yang, J. Rutqvist, Numerical Studies on Two-Way Coupled Fluid Flow and Geomechanics in Hydrate Deposits, SPE Reserv. Eval. Eng. 17(2012) 485-501. [85] Z. Su, Y. He, N. Wu, K. Zhang, G.J. Moridis, Evaluation on gas production potential from laminar hydrate deposits in Shenhu Area of South China Sea through depressurization using vertical wells, J. Pet. Sci. Eng. 86-87(2012) 87-98. [86] G. Li, G.J. Moridis, K. Zhang, X.-s. Li, The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea, J. Pet. Sci. Eng. 77(2011) 49-68. [87] J. Sun, L. Zhang, F. Ning, H. Lei, T. Liu, G. Hu, et al., Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea:A preliminary feasibility study, Mar. Pet. Geol. 86(2017) 447-473. [88] E.D. Sloan, Gas hydrates:Review of physical/chemical properties, Energy Fuel 12(1998) 191-196. [89] Z. Yin, G. Moridis, Z.R. Chong, H.K. Tan, P. Linga, Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium, Appl. Energy 230(2018) 444-459. [90] X.-S. Li, C.-G. Xu, Y. Zhang, X.-K. Ruan, G. Li, Y. Wang, Investigation into gas production from natural gas hydrate:A review, Appl. Energy 172(2016) 286-322. [91] Z. Yin, G. Moridis, Z.R. Chong, H.K. Tan, P. Linga, Numerical analysis of experiments on thermally induced dissociation of methane hydrates in porous media, Ind. Eng. Chem. Res. 57(2018) 5776-5791. [92] G. Moridis, Numerical studies of gas production from methane hydrates, SPE J. 8(2003) 359-370. [93] G.J. Moridis, M.B. Kowalsky, K. Pruess, Depressurization-induced gas production from class-1 hydrate deposits, SPE Reserv. Eval. Eng. 10(2007) 458-481. [94] P. Zhang, Q. Wu, C. Mu, Influence of temperature on methane hydrate formation, Sci. Rep. 7(2017) 7904. [95] P. Wang, S. Wang, Y. Song, M. Yang, Dynamic measurements of methane hydrate formation/dissociation in different gas flow direction, Appl. Energy 227(2018) 703-709. [96] W.M. Deen, Analysis of Transport Phenomena, Oxford University Press, New York, 1998. [97] B.J. Anderson, M. Kurihara, M.D. White, G.J. Moridis, S.J. Wilson, M. Pooladi-Darvish, et al., Regional long-term production modeling from a single well test, Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope, Mar. Pet. Geol. 28(2011) 493-501. [98] S. Uchida, A. Klar, K. Yamamoto, Sand production model in gas hydrate-bearing sediments, Int. J. Rock Mech. Min. Sci. 86(2016) 303-316. [99] S. Zhou, J. Zhao, Q. Li, W. Chen, J. Zhou, N. Wei, et al., Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization, Nat. Gas Ind. B 5(2018) 118-131. [100] M.R. Walsh, S.H. Hancock, S.J. Wilson, S.L. Patil, G.J. Moridis, R. Boswell, et al., Preliminary report on the commercial viability of gas production from natural gas hydrates, Energy Econ. 31(2009) 815-823. [101] A. Hu, Q. Dong, On natural gas pricing reform in China, Nat. Gas Ind. B 2(2015) 374-382. [102] W.-L. Hong, M.E. Torres, J. Carroll, A. Crémière, G. Panieri, H. Yao, et al., Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming, Nat. Commun. 8(2017) 15745. [103] C.D. Ruppel, J.D. Kessler, The interaction of climate change and methane hydrates, Rev. Geophys. 55(2017) 126-168. [104] A. Oyama, S. Masutani, A review of the methane hydrate program in Japan, Energies 10(2017) 1447. [105] G.J. Moridis, T.S. Collett, M. Pooladi-Darvish, S.H. Hancock, J.C. Santamarina, R. Boswell, et al., Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits, SPE Reserv. Eval. Eng. 14(2011) 76-112. [106] K. Miyazaki, A. Masui, Y. Sakamoto, K. Aoki, N. Tenma, T. Yamaguchi, Triaxial compressive properties of artificial methane-hydrate-bearing sediment, J. Geophys. Res. Solid Earth 116(2011), B06102. [107] Y. Song, F. Yu, Y. Li, W. Liu, J. Zhao, Mechanical property of artificial methane hydrate under triaxial compression, J. Nat. Gas Chem. 19(2010) 246-250. [108] T.S. Yun, J.C. Santamarina, C. Ruppel, Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate, J. Geophys. Res. Solid Earth 112(2007), B04106. [109] J. Yoneda, A. Masui, Y. Konno, Y. Jin, K. Egawa, M. Kida, et al., Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough, Mar. Pet. Geol. 66(2015) 471-486. [110] J. Brugada, Y.P. Cheng, K. Soga, J.C. Santamarina, Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution, Granul. Matter 12(2010) 517-525. [111] T.S. Collett, Gas Hydrates:Update on International Activities, U.S. Geol. Surv. (2018). [112] S.R. Dallimore, J.F. Wright, F.M. Nixon, M. Kurihara, K. Yamamoto, T. Fujii, et al., Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCAN/AURORA mallik gas hydrate production research well, The 6th International Conference on GasHydrates. Vancouver, British Columbia, Canada, 2008. [113] J. Henninges, E. Huenges, H. Burkhardt, In situ thermal conductivity of gas-hydratebearing sediments of the Mallik 5L-38 well, J. Geophys. Res. 110(2005), B11206. [114] T.D. Lorenson, M.J. Whiticar, A. Waseda, S.R. Dallimore, T.S. Collett, Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Geol. Surv. Can. Bull. (1999) 143-163. [115] M. Muraoka, M. Ohtake, N. Susuki, Y. Yamamoto, K. Suzuki, T. Tsuji, Thermal properties of methane hydrate-bearing sediments and surrounding mud recovered from Nankai Trough wells, J. Geophys. Res. Solid Earth 119(2014) 8021-8033. [116] T. Fujii, T. Saeki, T. Kobayashi, T. Inamori, M. Hayashi, O. Takano, et al., Resource Assessment of Methane Hydrate in the Eastern Nankai Trough, Japan, Offshore Technology Conference, Houston, Texas, USA, 200815. [117] J. Liang, J. Wei, N. Bigalke, J. Roberts, P. Schultheiss, M. Holland, et al., Laboratory quantification of geomechanical properties of hydrate-bearing sediments in the Shenhu Area of the South China Sea at in-situ conditions, the 9th International Conference on Gas Hydrates (ICGH 2017). Denver, USA, 2017. [118] X. Wang, D.R. Hutchinson, S. Wu, S. Yang, Y. Guo, Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea, J. Geophys. Res. 116(2011). [119] X. Fu, J. Wang, F. Tan, X. Feng, D. Wang, J. He, Gas hydrate formation and accumulation potential in the Qiangtang Basin, northern Tibet, China, Energy Convers. Manag. 73(2013) 186-194. [120] Z. Lu, Y. Zhu, Y. Zhang, H. Wen, Y. Li, C. Liu, Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China, Cold Reg. Sci. Technol. 66(2011) 93-104. [121] B. Li, Y. Sun, W. Guo, X. Shan, P. Wang, S. Pang, et al., The mechanism and verification analysis of permafrost-associated gas hydrate formation in the Qilian Mountain, Northwest China, Mar. Pet. Geol. 86(2017) 787-797. [122] Y. Zhu, Y. Zhang, H. Wen, Z. Lu, Z. Jia, Y. Li, et al., Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China, Acta Geol. Sin. Engl. Ed. 84(2010) 1-10. [123] M.E. Holland, P.J. Schultheiss, J.A. Roberts, Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.07.018(in press). [124] G.J. Moridis, M.T. Reagan, A.F. Queiruga, R. Boswell, Evaluation of the performance of the oceanic hydrate accumulation at site NGHP-02-09 in the Krishna-Godavari Basin during a production test and during single and multi-well production scenarios, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.12.001(in press). [125] J.J. Bahk, D.H. Kim, J.H. Chun, B.K. Son, J.H. Kim, B.J. Ryu, et al., Gas hydrate occurrences and their relation to host sediment properties:Results from second Ulleung Basin gas hydrate drilling expedition, East Sea, Mar. Pet. Geol. 47(2013) 21-29. [126] Y.J. Kim, T.S. Yun, Thermal conductivity of methane hydrate-bearing Ulleung Basin marine sediments:Laboratory testing and numerical evaluation, Mar. Pet. Geol. 47(2013) 77-84. [127] J. Choi, J.-H. Kim, M.E. Torres, W.-L. Hong, J.-W. Lee, B.Y. Yi, et al., Gas origin and migration in the Ulleung Basin, East Sea:Results from the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2), Mar. Pet. Geol. 47(2013) 113-124. [128] B.-J. Ryu, T.S. Collett, M. Riedel, G.Y. Kim, J.-H. Chun, J.-J. Bahk, et al., Scientific results of the second gas hydrate drilling expedition in the Ulleung Basin (UBGH2), Mar. Pet. Geol. 47(2013) 1-20. [129] S. Falser, S. Uchida, A.C. Palmer, K. Soga, T.S. Tan, Increased gas production from hydrates by combining depressurization with heating of the wellbore, Energy Fuel 26(2012) 6259-6267. [130] X.-S. Li, Y. Zhang, G. Li, Z.-Y. Chen, H.-J. Wu, Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator, Energy Fuel 25(2011) 4497-4505. [131] B. Li, G. Li, X.-S. Li, Q.-P. Li, B. Yang, Y. Zhang, et al., Gas production from methane hydrate in a pilot-scale hydrate simulator using the huff and puff method by experimental and numerical studies, Energy Fuel 26(2012) 7183-7194. [132] L. Zhang, J. Zhao, H. Dong, Y. Zhao, Y. Liu, Y. Zhang, et al., Magnetic resonance imaging for in-situ observation of the effect of depressurizing range and rate on methane hydrate dissociation, Chem. Eng. Sci. 144(2016) 135-143. [133] Y. Song, C. Cheng, J. Zhao, Z. Zhu, W. Liu, M. Yang, et al., Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods, Appl. Energy 145(2015) 265-277. [134] T.J. Kneafsey, L. Tomutsa, G.J. Moridis, Y. Seol, B.M. Freifeld, C.E. Taylor, et al., Methane hydrate formation and dissociation in a partially saturated core-scale sand sample, J. Pet. Sci. Eng. 56(2007) 108-126. [135] W.X. Pang, W.Y. Xu, C.Y. Sun, C.L. Zhang, G.J. Chen, Methane hydrate dissociation experiment in a middle-sized quiescent reactor using thermal method, Fuel 88(2009) 497-503. [136] H.O. Kono, S. Narasimhan, F. Song, D.H. Smith, Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing, Powder Technol. 122(2002) 239-246. [137] Y. Konno, Y. Jin, K. Shinjou, J. Nagao, Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment, RSC Adv. 4(2014) 51666-51675. [138] V.C. Nair, S.K. Prasad, R. Kumar, J.S. Sangwai, Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations, Appl. Energy 225(2018) 755-768. [139] I.K. Gamwo, Y. Liu, Mathematical modeling and numerical simulation of methane production in a hydrate reservoir, Ind. Eng. Chem. Res. 49(2010) 5231-5245. [140] M. Kurihara, K. Funatsu, H. Ouchi, Y. Masuda, H. Narita, T. Ebinuma, Development of numerical simulator predicting methane hydrate dissociation and production, J. Jpn. Assoc. Pet. Technol. 74(2009) 297-310. [141] M. Kurihara, A. Sato, H. Ouchi, H. Narita, Y. Masuda, T. Saeki, et al., Prediction of Gas Productivity From Eastern Nankai Trough Methane-Hydrate Reservoirs, SPE Reserv. Eval. Eng. 12(2009) 477-499. [142] M. Uddin, D.A. Coombe, D.H.-S. Law, W.D. Gunter, Numerical studies of gashydrates formation and decomposition in a geological reservoir, SPE Gas Technology Symposium, Society of Petroleum Engineers, Calgary, Alberta, Canada 2006, p. 13. [143] K. Nazridoust, G. Ahmadi, Computational modeling of methane hydrate dissociation in a sandstone core, Chem. Eng. Sci. 62(2007) 6155-6177. [144] Z. Liu, X. Yu, Thermo-hydro-mechanical-chemical simulation of methane hydrate dissociation in porous media, Geotech. Geol. Eng. 31(2013) 1681-1691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||