[1] C.J. Lyu, X.M. Ou, X.L. Zhang, China automotive energy consumption and greenhouse gas emissions outlook to 2050, Mitig. Adapt. Strateg. Glob. Chang. 20(5) (2015) 627-650. [2] X.S. Li, C.G. Xu, Y. Zhang, X.K. Ruan, G. Li, Y. Wang, Investigation into gas production from natural gas hydrate:A review, Appl. Energy 172(2016) 286-322. [3] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.S. Li, Review of natural gas hydrates as an energy resource:Prospects and challenges, Appl. Energy 162(2016) 1633-1652. [4] E.D. Sloan, Clathrate Hydrates of Natural Gases, CRC Press, Boca Raton, 2008. [5] D. Mahajan, C.E. Taylor, G.A. Mansoori, An introduction to natural gas hydrate/clathrate:The major organic carbon reserve of the Earth, J. Pet. Sci. Eng. 56(2007) 1-8. [6] T.S. Collett, Results at Mallik highlight progress in gas hydrate energy resource research and development, Petrophysics. 46(3) (2005) 237-243. [7] Y.F. Makogon, Natural gas hydrates-A promising source of energy, J. Nat. Gas Sci. Eng. 2(2010) 19-59. [8] H. Tomaru, U. Fehn, Z.L. Lu, R. Matsumoto, Halogen systematics in the Mallik 5L-38 gas hydrate production research well, Northwest Territories, Canada:Implications for the origin of gas hydrates under terrestrial permafrost conditions, Appl. Geochem. 22(3) (2007) 656-675. [9] R.B. Hunter, T.S. Collett, R. Boswell, B.J. Anderson, S.A. Digert, G. Pospisil, et al., Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope:Overview of scientific and technical program, Mar. Pet. Geol. 28(2011) 295-310. [10] R.M. Haberer, K. Mangelsdorf, H. Wilkes, B. Horsfield, Occurrence and paleoenvironmental significance of aromatic hydrovarbon biomarkers in oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well(Canada), Org. Geochem. 37(5) (2006) 519-538. [11] H. Tomaru, U. Fehn, Z.L. Lu, R. Matsumoto, Halogen systematics in the Mallik 5L-38 gas hydrate production research well, Northwest Territories, Canada:implications for the origin of gas hydrates under terrestrial permafrost conditions, Appl. Geochem. 22(3) (2007) 656-675. [12] Y. Konno, T. Fujii, A. Sato, K. Akamine, et al., Key findings of the world's first offshore methane hydrate production test off the coast of Japan:Toward future commercial production, Energy Fuels 31(3) (2017) 2607-2616. [13] X.S. Wu, W.C. Liu, F. Xue, M.H. Wang, P. Lv, World-wide progress of resource potential assessment, exploration and production test of natural gas hydrate, Mar. Geol. Front. 33(2017) 63-78. [14] C.L. Liu, J.Y. Sun, N.Y. Wu, Gas hydrate production test:from experimental simulation to field practice, Mar. Geol. Quat. Geol. 37(2017) 12-26. [15] T.J. Phelps, PD, S.L. Marshall, et al., A new experimental facility for investigating the formation and properties of gas hydrates under simulated seafloor conditions, Rev. Sci. Instrum. 72(2001) 1514-1521. [16] H.O. Kono, F. Song, et al., Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing, Powder Technol. 122(2002) 239-246. [17] P. Linga, C. Haligva, S.C. Nam, J.A. Ripmeester, P. Englezos, Recovery of methane from hydrate formed in a variable volume bed of silica sand particles, Energy Fuel 23(11) (2009) 5508-5516. [18] X.S. Li, B. Yang, Y. Zhang, G. Li, L.P. Duan, Y. Wang, et al., Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator, Appl. Energy 93(2012) 722-732. [19] K.H. Su, C.Y. Sun, N. Li, A large scale three-dimensional device for simulating natural gas hydrates accumulation and distribution process in sediments, Nat. Gas Ind. 33(12) (2013) 173-178(in Chinese). [20] M.H. YousiF, AH, M.S. Selim, Experimental and theoretical investigation of methanegas-hydrate dissociation in porous media, SPE Reserv. Eng. 6(1991) 69-76. [21] Y. Konno, Y. Jin, K. Shinjou, J. Nagao, Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment, RSC Adv. 4(2014) 51666-51675. [22] J.S. Booth, WW, W.P. Dilon, Apparatus investigates geological aspects of gas hydrates, Oil Gas J. 8(1999). [23] E. Spangenberg, M. Priegnitz, K. Heeschen, et al., Are laboratory-formed hydratebearing systems Analogous to those in nature? J. Chem. Eng. Data 60(2) (2015) 258-268. [24] M. Mottahedin, F. Varaminian, K. Mafakheri, Modeling of methane and ethane hydrate formation kinetics based on non-equilibrium thermodynamics, J. NonEquilib. Thermodyn. 36(1) (2011) 3-22. [25] T.M. Guo, B.H. Wu, Y.H. Zhu, S.S. Fan, G.J. Chen, A review on the gas hydrate research in China, J. Pet. Sci. Eng. 41(1-3) (2004) 11-20. [26] Y.H. Zhu, Y.Q. Zhang, Formation conditions of gas hydrates in permafrost of the Qilian Mountains, Northwest China, Geol. Bull. China 25(2006) 58-63. [27] Y.H. Zhu, Y.Q. Zhang, H.J. Wen, Z.Q. Lu, Z.Y. Jia, Y.H. Li, et al., Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China, Acta Geol Sin. Engl. 84(2010) 1-10. [28] Xiao Kun, ZC, Lu Zhenquan, Deng Juzi, Gas hydrate saturations estimated from poreand fracture-filling gas hydrate reservoirs in the Qilian Mountain permafrost, China, Sci. Rep. Uk. 7(2017) 1-16. [29] S.X. Yang, N.Y. Wu, X. Su, P.J. Schultheiss, M. Holland, G.X. Zhang, J.Q. Liang, J.A. Lu, K. Rose, High concentration hydrate in disseminated forms obtained in Shenhu Area, North Slope of South China Sea, The 6th International Conference on Gas Hydrates, 2008, (Vancouver, British Columbia, Canada). [30] X. Wang, S. Wu, S. Yuan, D. Wang, Y. Ma, G. Yao, et al., Geophysical signatures associated with fluid flow and gas hydrate occurrence in a tectonically quiescent sequence, Qiongdongnan Basin, South China Sea, Geofluids. 10(2010) 351-368. [31] X.Q. Han, E. Suess, Y.Y. Huang, N.Y. Wu, G. Bohrrnann, X. Su, et al., Jiulong methane reef:Microbial mediation of seep carbonates in the South China Sea, Mar. Geol. 249(2008) 243-256. [32] H.Q. Zhang, YS, N.Y. Wu, X. Su, M. Holland, P. rSchultheiss, K. Rose, H. Butler, G. Humphrey, GMGS-1 Science Team, Successful and Surprising Results for China's First Gas Hydrate Drilling Expedition, Fire in the Ice, 20076-9. [33] Z.Y. Yin, G. Moridis, H.K. Tan, P. Linga, Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium, Appl. Energy 220(2018) 681-704. [34] Q. Yuan, C.Y. Sun, X. Yang, P.C. Ma, Z.W. Ma, Q.P. Li, et al., Gas production from methane-hydrate-bearing sands by ethylene glycol injection using a threedimensional reactor, Energy Fuel 25(2011) 3108-3115. [35] G. Li, X.S. Li, L.G. Tang, Y. Zhang, Experimental investigation of production behavior of methane hydrate under ethylene glycol injection in unconsolidated sediment, Energy Fuel 21(2007) 3388-3393. [36] S.S. Fan, Y.Z. Zhang, G.L. Tian, D.Q. Liang, D.L. Li, Natural gas hydrate dissociation by presence of ethylene glycol, Energy Fuel 20(2006) 324-326. [37] F.H. Dong, X.Y. Zang, D.L. Li, S.A.S. Fan, D.Q. Liang, Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection, Energy Fuel 23(2009) 1563-1567. [38] S.X. Li, Z.Q. Wang, X.H. Xu, R.Y. Zheng, J. Hou, Experimental study on dissociation of hydrate reservoirs with different saturations by hot brine injection, J. Nat. Gas Sci. Eng. 46(2017) 555-562. [39] X. Yang, C.Y. Sun, K.H. Su, Q. Yuan, Q.P. Li, G.J. Chen, A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment by depressurization, Energy Convers. Manag. 56(2012) 1-7. [40] J.F. Zhao, Z. Fan, B. Wang, H.S. Dong, Y. Liu, Y.C. Song, Simulation of microwave stimulation for the production of gas from methane hydrate sediment, Appl. Energy 168(2016) 25-37. [41] X.S. Li, Y. Zhang, G. Li, Z.Y. Chen, H.J. Wu, Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator, Energy Fuel 25(2011) 4497-4505. [42] L.G. Tang, X.S. Li, Z.P. Feng, G. Li, S.S. Fan, Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs, Energy Fuel 21(2007) 227-233. [43] Z.Y. Yin, Z.R. Chong, H.K. Tan, P. Linga, Review of gas hydrate dissociation kinetic models for energy recovery, J. Nat. Gas Sci. Eng. 35(2016) 1362-1387. [44] J.C. Feng, Y. Wang, X.S. Li, G. Li, Y. Zhang, Z.Y. Chen, Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator, Appl. Energy 145(2015) 69-79. [45] J.C. Feng, Y. Wang, X.S. Li, Dissociation characteristics of water-saturated methane hydrate induced by huff and puff method, Appl. Energy 211(2018) 1171-1178. [46] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization, Appl. Energy 181(2016) 299-309. [47] B. Li, G. Li, X.S. Li, Q.P. Li, B. Yang, Y. Zhang, et al., Gas production from methane hydrate in a pilot-scale hydrate simulator using the huff and puff method by experimental and numerical studies, Energy Fuel 26(2012) 7183-7194. [48] L.X. Zhang, J.F. Zhao, H.S. Dong, Y.C. Zhao, Y. Liu, Y. Zhang, et al., Magnetic resonance imaging for in-situ observation of the effect of depressurizing range and rate on methane hydrate dissociation, Chem. Eng. Sci. 144(2016) 135-143. [49] Z.R. Chong, J.Z. Zhao, J.H.R. Chan, Z.Y. Yin, P. Linga, Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment, Appl. Energy 214(2018) 117-130. [50] C. Ji, G. Ahmadi, D.H. Smith, Natural gas production from hydrate decomposition by depressurization, Chem. Eng. Sci. 56(2001) 5801-5814. [51] G.J. Moridis, M.B. Kowalsky, K. Pruess, Depressurization-induced gas production from class 1 hydrate deposits, SPE Reserv. Eval. Eng. 10(2007) 458-481. [52] Z.Y. Yin, G. Moridis, Z.R. Chong, H.K. Tan, P. Linga, Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium, Appl. Energy 230(2018) 444-459. [53] Z.R. Chong, Z.Y. Yin, J.H.C. Tan, P. Linga, Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach, Appl. Energy 204(2017) 1513-1525. [54] L.J. Xiong, X.S. Li, Y. Wang, C.G. Xu, Experimental study on methane hydrate dissociation by depressurization in porous sediments, Energies 5(2012) 518-530. [55] D.X. Li, S.R. Ren, L. Zhang, Y.X. Liu, Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors, J. Pet. Sci. Eng. 146(2016) 552-560. [56] Y. Wang, J.-C. Feng, X.-S. Li, Y. Zhang, Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization, Appl. Energy 181(2016) 299-309. [57] H. Oyama, Y. Konno, Y. Masuda, H. Narita, Dependence of depressurization-induced dissociation of methane hydrate bearing laboratory cores on heat transfer, Energy Fuel 23(2009) 4995-5002. [58] B. Li, X.S. Li, G. Li, J.C. Feng, Y. Wang, Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator, Appl. Energy 129(2014) 274-286. [59] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, G. Li, Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment, Appl. Energy 162(2016) 372-381. [60] Q.B. Wu, Y.M. Wang, J. Zhan, Effect of rapidly depressurizing and rising temperature on methane hydrate dissociation, J. Nat. Gas Chem. 21(2012) 91-97. [61] Y. Zhang, X.S. Li, Z.Y. Chen, Y. Wang, X.K. Ruan, Effect of hydrate saturation on the methane hydrate dissociation by depressurization in sediments in a cubic hydrate simulator, Ind. Eng. Chem. Res. 54(2015) 2627-2637. [62] Y. Zhang, X.S. Li, Z.Y. Chen, G. Li, Y. Wang, Experimental investigation into gas hydrate formation in sediments with cooling method in three-dimensional simulator, Ind. Eng. Chem. Res. 53(37) (2014) 14208-14216. [63] J.C. Feng, Y. Wang, X.S. Li, Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs, Energy 125(2017) 62-71. [64] Z.R. Chong, J.W.R. Moh, Z. Yin, J. Zhao, P. Linga, Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments, Appl. Energy 229(2018) 637-647. [65] Q. Yuan, C.Y. Sun, X.H. Wang, X.Y. Zeng, X. Yang, B. Liu, et al., Experimental study of gas production from hydrate dissociation with continuous injection mode using a three-dimensional quiescent reactor, Fuel. 106(2013) 417-424. [66] X. Yang, C.Y. Sun, Q. Yuan, P.C. Ma, G.J. Chen, Experimental study on gas production from methane hydrate-bearing sand by hot-water cyclic injection, Energy Fuel 24(2010) 5912-5920. [67] X.S. Li, B. Yang, G. Li, B. Li, Y. Zhang, Z.Y. Chen, Experimental study on gas production from methane hydrate in porous media by huff and puff method in Pilot-Scale Hydrate Simulator, Fuel. 94(2012) 486-494. [68] Y. Wang, X.S. Li, G. Li, Y. Zhang, B. Li, Z.Y. Chen, Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system, Appl. Energy 110(2013) 90-97. [69] J.C. Feng, Y. Wang, X.S. Li, G. Li, Z.Y. Chen, Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells, Energy. 79(2015) 315-324. [70] J.C. Feng, Y. Wang, X.S. Li, Z.Y. Chen, G. Li, Y. Zhang, Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir, Appl. Energy 154(2015) 995-1003. [71] S. He, D.Q. Liang, D.L. Li, L.L. Ma, Experimental investigation on the dissociation behavior of methane gas hydrate in an unconsolidated sediment by microwave stimulation, Energy Fuel 25(2011) 33-41. [72] Y. Lee, Y. Kim, J. Lee, H. Lee, Y. Seo, CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter, Appl. Energy 150(2015) 120-127. [73] J.B. Wang, GX, G.J. Chen, Z.Z. Li, Y.Y. Yang, Experimental research on methane recovery from natural gas hydrate by carbon dioxide replacement, J. Chem. Eng. Chin. Univ. 21(2007) 715-719. [74] Z.Z. Li, GX, J.B. Wang, L.Y. Yang, Experimental studied on CH4 recovery from hydrate using CO2 in different systems, Nat. Gas Ind. 28(2008) 129-133. [75] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R.L. Smith, H. Inomata, Replacement of CH4 in the hydrate by use of liquid CO2, Energy Convers. Manag. 46(2005) 1680-1691. [76] Q. Yuan, C.Y. Sun, B. Liu, X. Wang, Z.W. Ma, Q.L. Ma, et al., Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2, Energy Convers. Manag. 67(2013) 257-264. [77] X.T. Zhou, S.S. Fan, D.Q. Liang, J.W. Du, Replacement of methane from quartz sandbearing hydrate with carbon dioxide-in-water emulsion, Energy Fuel 22(2008) 1759-1764. [78] Z.Z. Li, X.Q. Guo, L.Y. Yang, X.N. Ma, Exploitation of methane in the hydrate by use of carbon dioxide in the presence of sodium chloride, Pet. Sci. 6(2009) 426-432. [79] B. Li, T.F. Xu, G.B. Zhang, W. Guo, H.N. Liu, Q.W. Wang, et al., An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement, Energy Convers. Manag. 165(2018) 738-747. [80] Y.J. Lin, H.P. Veluswamy, P. Linga, Effect of eco-friendly cyclodextrin on the kinetics of mixed methane-tetrahydrofuran hydrate formation, Ind. Eng. Chem. Res. 57(2018) 5944-5950. [81] Y.F. Makogon, Hydrates of Natural Gas, Penn Well Books, Tulsa, OK, 1981. [82] X.S. Li, L.H. Wan, G. Li, Q.P. Li, Z.Y. Chen, K.F. Yan, Experimental investigation into the production behavior of methane hydrate in porous sediment with hot brine stimulation, Ind. Eng. Chem. Res. 47(2008) 9696-9702. [83] Y. Wang, X.S. Li, G. Li, Y. Zhang, B. Li, J.C. Feng, A three-dimensional study on methane hydrate decomposition with different methods using five-spot well, Appl. Energy 112(2013) 83-92. [84] Y. Wang, X.S. Li, G. Li, N.S. Huang, J.C. Feng, Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method, Fuel. 117(2014) 688-696. [85] J.C. Feng, Y. Wang, X.S. Li, Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand, Appl. Energy 174(2016) 181-191. [86] X.H. Wang, C.Y. Sun, G.J. Chen, Y.N. He, Y.F. Sun, Y.F. Wang, et al., Influence of gas sweep on methane recovery from hydrate-bearing sediments, Chem. Eng. Sci. 134(2015) 727-736. [87] L.X. Zhang, L. Yang, J.Q. Wang, J.F. Zhao, H.S. Dong, M.J. Yang, et al., Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate, Chem. Eng. J. 308(2017) 40-49. [88] Y.H. Li, Y.C. Song, W.G. Liu, F. Yu, Experimental research on the mechanical properties of methane hydrate-ice mixtures, Energies 5(2012) 181-192. [89] X.H. Zhang, X.B. Lu, Y.H. Shi, Z. Xia, Study on the mechanical properties of hydratebearing silty clay, Mar. Pet. Geol. 67(2015) 72-80. [90] H. Han, Y. Wang, X.S. Li, J.X. Yu, J.C. Feng, Y. Zhang, Experimental study on sediment deformation during methane hydrate decomposition in sandy and silty clay sediments with a novel experimental apparatus, Fuel. 182(2016) 446-453. [91] L. Yu, Y. Xu, Z.W. Gong, F. Huang, L. Zhang, S.R. Ren, Experimental study and numerical modeling of methane hydrate dissociation and gas invasion during drilling through hydrate bearing formations, J. Pet. Sci. Eng. 168(2018) 507-520. |