中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (9): 2164-2179.DOI: 10.1016/j.cjche.2019.03.022
• Special Issue on Natural Gas Hydrate • 上一篇 下一篇
Youhong Sun, Shuhui Jiang, Shengli Li, Guobiao Zhang, Wei Guo
收稿日期:
2018-12-21
修回日期:
2019-02-27
出版日期:
2019-09-28
发布日期:
2019-12-04
通讯作者:
Shengli Li
基金资助:
Youhong Sun, Shuhui Jiang, Shengli Li, Guobiao Zhang, Wei Guo
Received:
2018-12-21
Revised:
2019-02-27
Online:
2019-09-28
Published:
2019-12-04
Contact:
Shengli Li
Supported by:
摘要: Gas hydrates have drawn global attentions in the past decades as potential energy resources. It should be noted that there are a variety of possible applications of hydrate-based technologies, including natural gas storage, gas transportation, separation of gas mixture, and seawater desalination. These applications have been critically challenged by insufficient understanding of hydrate formation kinetics. In this work, the literatures on growth kinetic behaviors of hydrate formation from water-hydrocarbon were systematically reviewed. The hydrate crystal growth, hydrate film growth and macroscopic hydrate formation in water system were reviewed, respectively. Firstly, the hydrate crystal growth was analyzed with respect to different positions, such as gas/liquid interface, liquid-liquid interface and gas-liquid-liquid system. Secondly, experimental and modeling studies on the growth of hydrate film at the interfaces between guest phase and water phase were categorized into two groups of lateral growth and thickening growth considering the differences in growth rates. Thirdly, we summarized the promoters and inhibitors reported (biological or chemical, liquid or solid and hydrophobic or hydrophilic) and analyzed the mechanisms affecting hydrate formation in bulk water system. Knowledge gaps and suggestions for further studies on hydrate formation kinetic behaviors are presented.
Youhong Sun, Shuhui Jiang, Shengli Li, Guobiao Zhang, Wei Guo. Growth kinetics of hydrate formation from water–hydrocarbon system[J]. 中国化学工程学报, 2019, 27(9): 2164-2179.
Youhong Sun, Shuhui Jiang, Shengli Li, Guobiao Zhang, Wei Guo. Growth kinetics of hydrate formation from water–hydrocarbon system[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2164-2179.
[1] E.D. Sloan, Fundamental principles and applications of natural gas hydrates, Nature 426(2003) 353-359. [2] H.P. Veluswamy, R. Kumar, P. Linga, Hydrogen storage in clathrate hydrates:Current state of the art and future directions, Appl. Energy 122(2014) 112-132. [3] S. Fan, L. Yang, Y. Wang, X. Lang, Y. Wen, X. Lou, Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution, Chem. Eng. Sci. 106(2014) 53-59. [4] H. Liu, B. Liu, L.C. Lin, G. Chen, Y. Wu, J. Wang, X. Gao, Y. Lv, Y. Pan, X. Zhang, X. Zhang, L. Yang, C. Sun, B. Smit, W. Wang, A hybrid absorption-adsorption method to efficiently capture carbon, Nat. Commun. 5(2014) 5147. [5] Z. Xia, X. Li, Z. Chen, K. Yan, C. Xu, J. Cai, Hydrate-based hydrogen purification from simulated syngas with synergic additives, Int. J. Hydrogen Energy 41(2016) 2649-2659. [6] Y.N. Lv, S.S. Wang, C.Y. Sun, J. Gong, G.J. Chen, Desalination by forming hydrate from brine in cyclopentane dispersion system, Desalination 413(2017) 217-222. [7] P. Babu, A. Nambiar, T.B. He, I.A. Karimi, J.D. Lee, P. Englezos, P. Linga, A review of clathrate hydrate based desalination to strengthen energy-water nexus, ACS Sustain. Chem. Eng. 6(2018) 8093-8107. [8] T. Ogawa, T. Ito, K. Watanabe, K.I. Tahara, R. Hiraoka, J.I. Ochiai, R. Ohmura, Y.H. Mori, Development of a novel hydrate-based refrigeration system:A preliminary overview, Appl. Therm. Eng. 26(2006) 2157-2167. [9] K. Saito, M. Kishimoto, R. Tanaka, R. Ohmura, Crystal growth of clathrate hydrate at the interface between hydrocarbon gas mixture and liquid water, Cryst. Growth Des. 11(2011) 295-301. [10] R. Tanaka, R. Sakemoto, R. Ohmura, Crystal growth of clathrate hydrates formed at the interface of liquid water and gaseous methane, ethane, or propane:Variations in crystal morphology, Cryst. Growth Des. 9(2009) 2529-2536. [11] P. Servio, P. Englezos, Morphology of methane and carbon dioxide hydrates formed from water droplets, AIChE J. 49(2003) 269-276. [12] J.D. Lee, M. Song, R. Susilo, P. Englezos, Dynamics of methane-propane clathrate hydrate crystal growth from liquid water with or without the presence of n-heptane, Cryst. Growth Des. 6(2006) 1428-1439. [13] S. Watanabe, K. Saito, R. Ohmura, Crystal growth of clathrate hydrate in liquid water saturated with a simulated natural gas, Cryst. Growth Des. 11(2011) 3235-3242. [14] R. Ohmura, S. Matsuda, T. Uchida, T. Ebinuma, H. Narita, Clathrate hydrate crystal growth in liquid water saturated with a guest substance:Observations in a methane plus water system, Cryst. Growth Des. 5(2005) 953-957. [15] M. Aifaa, K. Imasato, R. Ohmura, Clathrate hydrate crystal growth in natural gas saturated water flow, Cryst. Growth Des. 15(2015) 2853-2858. [16] M. Aifaa, T. Kodama, R. Ohmura, Crystal growth of clathrate hydrate in a flowing liquid water system with methane gas, Cryst. Growth Des. 15(2015) 559-563. [17] J. Yoslim, P. Linga, P. Englezos, Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants, J. Cryst. Growth 313(2010) 68-80. [18] S.Y. Lee, H.C. Kim, J.D. Lee, Morphology study of methane-propane clathrate hydrates on the bubble surface in the presence of SDS or PVCap, J. Cryst. Growth 402(2014) 249-259. [19] H. Hayama, M. Mitarai, H. Mori, J. Verrett, P. Servio, R. Ohmura, Surfactant effects on crystal growth dynamics and crystal morphology of methane hydrate formed at gas/liquid interface, Cryst. Growth Des. 16(2016) 6084-6088. [20] F. Wang, L. Wang, C. Wang, G. Guo, G. Liu, S. Luo, R. Guo, Direction controlled methane hydrate growth, Cryst. Growth Des. 15(2015) 5112-5117. [21] H.-P. Veluswamy, Q.W. Hong, P. Linga, Morphology study of methane hydrate formation and dissociation in the presence of amino acid, Cryst. Growth Des. 16(2016) 5932-5945. [22] R. Kumar, J.D. Lee, M. Song, P. Englezos, Kinetic inhibitor effects on methane/propane clathrate hydrate-crystal growth at the gas/water and water/n-heptane interfaces, J. Cryst. Growth 310(2008) 1154-1166. [23] L.U. Udegbunam, J.R. DuQuesnay, L. Osorio, V.K. Walker, J.G. Beltran, Phase equilibria, kinetics and morphology of methane hydrate inhibited by antifreeze proteins:Application of a novel 3-in-1 method, J. Chem. Thermodyn. 117(2018) 155-163. [24] H. Bruusgaard, L.D. Lessard, P. Servio, Morphology study of structure I methane hydrate formation and decomposition of water droplets in the presence of biological and polymeric kinetic inhibitors, Cryst. Growth Des. 9(2009) 3014-3023. [25] H. Sakaguchi, R. Ohmura, Y.H. Mori, Effects of kinetic inhibitors on the formation and growth of hydrate crystals at a liquid-liquid interface, J. Cryst. Growth 247(2003) 631-641. [26] M. Kishimoto, S. Iijima, R. Ohmura, Crystal growth of clathrate hydrate at the interface between seawater and hydrophobic-guest liquid:Effect of elevated salt concentration, Ind. Eng. Chem. Res. 51(2012) 5224-5229. [27] M. Mitarai, M. Kishimoto, D. Suh, R. Ohmura, Surfactant effects on the crystal growth of clathrate hydrate at the interface of water and hydrophobic-guest liquid, Cryst. Growth Des. 15(2015) 812-821. [28] H. Delroisse, J.-P. Torre, C. Dicharry, Effect of a hydrophilic cationic surfactant on cyclopentane hydrate crystal growth at the water/cyclopentane interface, Cryst. Growth Des. 17(2017) 5098-5107. [29] M. Cha, S. Baek, J. Morris, J.W. Lee, Hydrophobic particle effects on hydrate crystal growth at the water-oil interface, Chem. Asian J. 9(2014) 261-267. [30] Y.Ishida,R.Sakemoto,R.Ohmura,Crystalgrowthofclathratehydrateingas/liquid/liquid system:Variations in crystal-growth behavior, Chem. Eur. J. 17(2011) 9471-9477. [31] Y. Ishida, Y. Takahashi, R. Ohmura, Dynamic behavior of clathrate hydrate growth in gas/liquid/liquid system, Cryst. Growth Des. 12(2012) 3271-3277. [32] P. Servio, P. Englezos, Morphology study of structure H hydrate formation from water droplets, Cryst. Growth Des. 3(2003) 61-66. [33] R. Ohmura, S. Matsuda, S. Itoh, T. Ebinuma, H. Narita, Formation and growth of structure-H hydrate crystals on a water droplet in contact with methane gas and a large-molecule guest substance liquid, Cryst. Growth Des. 5(2005) 1821-1824. [34] Y. Jin, J. Nagao, Morphological change in structure H clathrates of methane and liquid hydrocarbon at the liquid-liquid interface, Cryst. Growth Des. 11(2011) 3149-3152. [35] Z. Liu, H. Li, L. Chen, B. Sun, A new model of and insight into hydrate film lateral growth along the gas-liquid interface considering natural convection heat transfer, Energy Fuels 32(2018) 2053-2063. [36] T. Mochizuki, Y.H. Mori, Simultaneous mass and heat transfer to/from the edge of a clathrate-hydrate film causing its growth along a water/guest-fluid phase boundary, Chem. Eng. Sci. 171(2017) 61-75. [37] S.-L. Li, Y.-F. Wang, C.-Y. Sun, G.-J. Chen, B. Liu, Z.-Y. Li, Q.-L. Ma, Factors controlling hydrate film growth at water/oil interfaces, Chem. Eng. Sci. 135(2015) 412-420. [38] M. Kitamura, Y.H. Mori, Clathrate-hydrate film growth along water/methane phase boundaries-an observational study, Cryst. Res. Technol. 48(2013) 511-519. [39] B.Z. Peng, A. Dandekar, C.Y. Suin, H. Luo, Q.L. Ma, W.X. Pang, G.J. Chen, Hydrate film growth on the surface of a gas bubble suspended in water, J. Phys. Chem. B 111(2007) 12485-12493. [40] T. Mochizuki, Y.H. Mori, Clathrate-hydrate film growth along water/hydrateformer phase boundaries-numerical heat-transfer study, J. Cryst. Growth 290(2006) 642-652. [41] E.M. Freer, M.S. Selim, E.D. Sloan, Methane hydrate film growth kinetics, Fluid Phase Equilib. 185(2001) 65-75. [42] Y. Abe, X. Ma, T. Yanai, K. Yamane, Development of formation and growth models of CO2 hydrate film, AIChE J. 62(2016) 4078-4089. [43] Y. Tabe, S. Hirai, K. Okazaki, Measurement of CO2 hydrate film thickness based on mass transport mechanism, J. Chem. Eng. Jpn. 33(2000) 612-616. [44] S.R.Davies, J.W. Lachance,E.D.Sloan, C.A.Koh, High-pressure differentialscanning calorimetry measurementsofthemasstransferresistanceacrossamethanehydrate film as a function of time and subcooling, Ind. Eng. Chem. Res. 49(2010) 12319-12326. [45] C.J. Taylor, K.T. Miller, C.A. Koh, E.D. Sloan Jr., Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface, Chem. Eng. Sci. 62(2007) 6524-6533. [46] Y.H. Mori, Clathrate hydrate formation at the interface between liquid CO2 and water phases-a review of rival models characterizing "hydrate films", Energy Convers. Manage. 39(1998) 1537-1557. [47] T. Uchida, T. Ebinuma, J. Kawabata, H. Narita, Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide, J. Cryst. Growth 204(1999) 348-356. [48] C.-Y. Sun, G.-J. Chen, C.-F. Ma, Q. Huang, H. Luo, Q.-P. Li, The growth kinetics of hydrate film on the surface of gas bubble suspended in water or aqueous surfactant solution, J. Cryst. Growth 306(2007) 491-499. [49] B. Peng, C. Sun, G. Chen, L. Yang, W. Zhou, W. Pang, Hydrate film growth at the interface between gaseous CO2 and sodium chloride solution, Sci. China Ser. B 52(2009) 676-682. [50] S.-L. Li, C.-Y. Sun, B. Liu, Z.-Y. Li, G.-J. Chen, A.K. Sum, New observations and insights into the morphology and growth kinetics of hydrate films, Sci. Rep. 4(2014) 4129. [51] S.-L. Li, C.-Y. Sun, B. Liu, X.-J. Feng, F.-G. Li, L.-T. Chen, G.-J. Chen, Initial thickness measurements and insights into crystal growth of methane hydrate film, AIChE J. 59(2013) 2145-2154. [52] R. Wu, K.A. Kozielski, P.G. Hartley, E.F. May, J. Boxall, N. Maeda, Methane-propane mixed gas hydrate film growth on the surface of water and Luvicap EG solutions, Energy Fuels 27(2013) 2548-2554. [53] S.A. Morrissy, A.J. McKenzie, B.F. Graham, M.L. Johns, E.F. May, Z.M. Aman, Reduction of clathrate hydrate film growth rate by naturally occurring surface active components, Energy Fuels 31(2017) 5798-5805. [54] Y.H. Mori, Estimating the thickness of hydrate films from their lateral growth rates:Application of a simplified heat transfer model, J. Cryst. Growth 223(2001) 206-212. [55] M. Kishimoto, R. Ohmura, Correlation of the growth rate of the hydrate layer at a guest/liquid-water interface to mass transfer resistance, Energies 5(2012) 92-100. [56] K. Saito, A.K. Sum, R. Ohmura, Correlation of hydrate-film growth rate at the guest/liquid-water interface to mass transfer resistance, Ind. Eng. Chem. Res. 49(2010) 7102-7103. [57] R. Ohmura, S. Kashiwazaki, Y.H. Mori, Measurements of clathrate-hydrate film thickness using laser interferometry, J. Cryst. Growth 218(2000) 372-380. [58] H. Teng, C.M. Kinoshita, S.M. Masutani, Hydrate formation on the surface of a CO2 droplet in high-pressure, low-temperature water, Chem. Eng. Sci. 50(1995) 559-564. [59] I.L. Moudrakovski, G.E. McLaurin, C.I. Ratcliffe, J.A. Ripmeester, Methane and carbon dioxide hydrate formation in water droplets:Spatially resolved measurements from magnetic resonance microimaging, J. Phys. Chem. B 108(2004) 17591-17595. [60] R.W. Henning, A.J. Schultz, V. Thieu, Y. Halpern, Neutron diffraction studies of CO2 clathrate hydrate:Formation from deuterated ice, J. Phys. Chem. A 104(2000) 5066-5071. [61] S.R. Davies, C.A. Koh, A.K. Sum, E.D. Sloan Jr., Studies of mass transfer resistances to hydrate formation, Abstr. Pap. Am. Chem. Soc. 237(2009) 108-FUEL. [62] T. Mochizuki, Y.H. Mori, Numerical simulation of transient heat and mass transfer controlling the growth of a hydrate film, Ann. N. Y. Acad. Sci. 912(2000) 642-650. [63] M. Sugaya, Y.H. Mori, Behavior of clathrate hydrate formation at the boundary of liquid water and a fluorocarbon in liquid or vapor state, Chem. Eng. Sci. 51(1996) 3505-3517. [64] S. Liang, P.G. Kusalik, The mobility of water molecules through gas hydrates, J. Am. Chem. Soc. 133(2011) 1870-1876. [65] S.R. Davies, E.D. Sloan, A.K. Sum, C.A. Koh, In situ studies of the mass transfer mechanism across a methane hydrate film using high-resolution confocal Raman spectroscopy, J. Phys. Chem. C 114(2010) 1173-1180. [66] D.J. Turner, K.T. Miller, E.D. Sloan, Methane hydrate formation and an inward growing shell model in water-in-oil dispersions, Chem. Eng. Sci. 64(2009) 3996-4004. [67] J. Dong Lee, R. Susilo, P. Englezos, Methane-ethane and methane-propane hydrate formation and decomposition on water droplets, Chem. Eng. Sci. 60(2005) 4203-4212. [68] B.H. Shi, J. Gong, C.Y. Sun, J.K. Zhao, Y. Ding, G.J. Chen, An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer, Chem. Eng. J. 171(2011) 1308-1316. [69] C.Y. Sun, B.Z. Peng, A. Dandekar, Q.L. Ma, G.J. Chen, Studies on hydrate film growth, Annu. Rep. Prog. Chem., Sect. C:Phys. Chem. 106(2010) 77. [70] Y.H. Mori, T. Mochizuki, Mass transport across clathrate hydrate films-a capillary permeation model, Chem. Eng. Sci. 52(1997) 3613-3616. [71] J.-H. Sa, G.-H. Kwak, B.R. Lee, D.-H. Park, K. Han, K.-H. Lee, Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation, Sci. Rep. 3(2013) 2428. [72] S.A. Rad, K.R. Khodaverdiloo, M. Karamoddin, F. Varaminian, K. Peyvandi, Kinetic study of amino acids inhibition potential of Glycine and L-leucine on the ethane hydrate formation, J. Nat. Gas Sci. Eng. 26(2015) 819-826. [73] H.P. Veluswamy, P.Y. Lee, K. Premasinghe, P. Linga, Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation, Ind. Eng. Chem. Res. 56(2017) 6145-6154. [74] H. Roosta, A. Dashti, S.H. Mazloumi, F. Varaminian, The dual effect of amino acids on the nucleation and growth rate of gas hydrate in ethane plus water, methane plus propane plus water and methane plus THF plus water systems, Fuel 212(2018) 151-161. [75] G. Bhattacharjee, N. Choudhary, A. Kumar, S. Chakrabarty, R. Kumar, Effect of the amino acid L-histidine on methane hydrate growth kinetics, J. Nat. Gas Sci. Eng. 35(2016) 1453-1462. [76] W. Wang, Z. Huang, H. Chen, Z. Tan, C. Chen, L. Sun, Methane hydrates with a high capacity and a high formation rate promoted by biosurfactants, Chem. Commun. 48(2012) 11638-11640. [77] S.M. Babakhani, A. Alamdari, Effect of maize starch on methane hydrate formation/dissociation rates and stability, J. Nat. Gas Sci. Eng. 26(2015) 1-5. [78] Q. Sun, B. Chen, Y. Li, Z. Xu, X. Guo, X. Li, W. Lan, L. Yang, Promotion effects of mung starch on methane hydrate formation equilibria/rate and gas storage capacity, Fluid Phase Equilib. 475(2018) 95-99. [79] Y. Kuji, A. Yamasaki, Y. Yanagisawa, Effect of cyclodextrins on hydrate formation rates, Energy Fuels 20(2006) 2198-2201. [80] H. Ji, D. Chen, G. Wu, Molecular mechanisms for cyclodextrin-promoted methane hydrate formation in water, J. Phys. Chem. C 121(2017) 20967-20975. [81] Y. Lin, H.P. Veluswamy, P. Linga, Effect of eco-friendly cyclodextrin on the kinetics of mixed methane-tetrahydrofuran hydrate formation, Ind. Eng. Chem. Res. 57(2018) 5944-5950. [82] S. Jadav, N. Sakthipriya, M. Doble, J.S. Sangwai, Effect of biosurfactants produced by Bacillus subtilis and Pseudomonas aeruginosa on the formation kinetics of methane hydrates, J. Nat. Gas Sci. Eng. 43(2017) 156-166. [83] A. Arora, S.S. Cameotra, R. Kumar, C. Balomajumder, A.K. Singh, B. Santhakumari, P. Kumar, S. Laik, Biosurfactant as a promoter of methane hydrate formation:Thermodynamic and kinetic studies, Sci. Rep. 6(2016) 20893. [84] Y. Zhong, R.E. Rogers, Surfactant effects on gas hydrate formation, Chem. Eng. Sci. 55(2000) 4175-4187. [85] H. Ganji, M. Manteghian, H.R. Mofiad, Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity, Fuel Process. Technol. 88(2007) 891-895. [86] W. Lin, G.J. Chen, C.Y. Sun, X.Q. Guo, Z.K. Wu, M.Y. Liang, L.T. Chen, L.Y. Yang, Effect of surfactant on the formation and dissociation kinetic behavior of methane hydrate, Chem. Eng. Sci. 59(2004) 4449-4455. [87] H.P. Veluswamy, J.Y. Chen, P. Linga, Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates, Chem. Eng. Sci. 126(2015) 488-499. [88] J.S. Zhang, S. Lee, J.W. Lee, Kinetics of methane hydrate formation from SDS solution, Ind. Eng. Chem. Res. 46(2007) 6353-6359. [89] A. Mandal, S. Laik, Effect of the promoter on gas hydrate formation and dissociation, Energy Fuels 22(2008) 2527-2532. [90] N. Choudhary, V.R. Hande, S. Roy, S. Chakrabarty, R. Kumar, Effect of sodium dodecyl sulfate surfactant on methane hydrate formation:A molecular dynamics study, J. Phys. Chem. B 122(2018) 6536-6542. [91] Y. Luzinova, G.T. Dobbs, Y. Raichlin, A. Katzir, B. Mizaikoff, Infrared spectroscopic monitoring of surface effects during gas hydrate formation in the presence of detergents, Chem. Eng. Sci. 66(2011) 5497-5503. [92] K. Okutani, Y. Kuwabara, Y.H. Mori, Surfactant effects on hydrate formation in an unstirred gas/liquid system:An experimental study using methane and sodium alkyl sulfates, Chem. Eng. Sci. 63(2008) 183-194. [93] Y.-A. Kwon, J.-M. Park, K.-E. Jeong, C.-U. Kim, T.-W. Kim, H.-J. Chae, S.-Y. Jeong, J.-H. Yim, Y.-K. Park, J.-d. Lee, Synthesis of anionic multichain type surfactant and its effect on methane gas hydrate formation, J. Ind. Eng. Chem. 17(2011) 120-124. [94] C. Dicharry, J. Diaz, J.-P. Torre, M. Ricaurte, Influence of the carbon chain length of a sulfate-based surfactant on the formation of CO2, CH4 and CO2-CH4 gas hydrates, Chem. Eng. Sci. 152(2016) 736-745. [95] F. Wang, Z.-Z. Jia, S.-J. Luo, S.-F. Fu, L. Wang, X.-S. Shi, C.-S. Wang, R.-B. Guo, Effects of different anionic surfactants on methane hydrate formation, Chem. Eng. Sci. 137(2015) 896-903. [96] L. Zhang, E. Li, S. Wang, S. Zhou, Study on Promotion of Surfactant on Gas Hydrate Formation, in:G. Li, C. Chen (Eds.),Applied Mechanics and Materials I, Pts 1-3, 2013. [97] H. Ganji, M. Manteghian, K.S. Zadeh, M.R. Omidkhah, H.R. Mofrad, Effect of different surfactants on methane hydrate formation rate, stability and storage capacity, Fuel 86(2007) 434-441. [98] A. Fazlali, S.A. Kazemi, M. Keshavarz-Moraveji, A.H. Mohammadi, Impact of different surfactants and their mixtures on methane-hydrate formation, Energy Technol. 1(2013) 471-477. [99] R. Karimi, F. Varaminian, A.A. Izadpanah, A.H. Mohammadi, Effects of different surfactants on the kinetics of ethane-hydrate formation:Experimental and modeling studies, Energy Technol. 1(2013) 530-536. [100] R. Karimi, F. Varaminian, A.A. Izadpanah, A.H. Mohammadi, Effects of two surfactants sodium dodecyl sulfate (SDS) and polyoxyethylene (20) sorbitan monopalmitate (Tween(R)40) on ethane hydrate formation kinetics:Experimental and modeling studies, J. Nat. Gas Sci. Eng. 21(2014) 193-200. [101] L. Shi, X. Shen, J. Ding, D. Liang, Experimental study on the formation kinetics of methane hydrates in the presence of tetrabutylammonium bromide, Energy Fuels 31(2017) 8540-8547. [102] S. Babaee, H. Hashemi, A.H. Mohammadi, P. Naidoo, D. Ramjugernath, Kinetic study of hydrate formation for argon plus TBAB plus SDS aqueous solution system, J. Chem. Thermodyn. 116(2018) 121-129. [103] D. Mech, P. Gupta, J.S. Sangwai, Kinetics of methane hydrate formation in an aqueous solution of thermodynamic promoters (THF and TBAB) with and without kinetic promoter (SDS), J. Nat. Gas Sci. Eng. 35(2016) 1519-1534. [104] H.P. Veluswamy, A.J.H. Wong, P. Babu, R. Kumar, S. Kulprathipanja, P. Rangsunvigit, P. Linga, Rapid methane hydrate formation to develop a cost effective large scale energy storage system, Chem. Eng. J. 290(2016) 161-173. [105] H.P. Veluswamy, S. Kumar, R. Kumar, P. Rangsunvigit, P. Linga, Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures:Application to natural gas storage, Fuel 182(2016) 907-919. [106] H. Kakati, A. Mandal, S. Laik, Effect of SDS/THF on thermodynamic and kinetic properties of formation of hydrate from a mixture of gases (CH4+C2H6+C3H8) for storing gas as hydrate, J. Energy Chem. 25(2016) 409-417. [107] Q.-L. Ma, G.-J. Chen, L.-W. Zhang, Experimental and modeling study on gas hydrate formation kinetics of (methane plus ethylene plus tetrahydrofuran + H2O), J. Chem. Eng. Data 54(2009) 2474-2478. [108] F. Long, S. Fan, Y. Wang, X. Lang, Promoting effect of super absorbent polymer on hydrate formation, J. Nat. Gas Chem. 19(2010) 251-254. [109] S. Baek, Y.-H. Ahn, J. Zhang, J. Min, H. Lee, J.W. Lee, Enhanced methane hydrate formation with cyclopentane hydrate seeds, Appl. Energy 202(2017) 32-41. [110] S. Arjang, M. Manteghian, A. Mohammadi, Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa, Chem. Eng. Res. Des. 91(2013) 1050-1054. [111] A. Mohammadi, M. Manteghian, A.H. Mohammadi, A. Jahangiri, Induction time, storage capacity, and rate of methane hydrate formation in the presence of SDS and silver nanoparticles, Chem. Eng. Commun. 204(2017) 1420-1427. [112] H. Pahlavanzadeh, S. Rezaei, M. Khanlarkhani, M. Manteghian, A.H. Mohammadi, Kinetic study of methane hydrate formation in the presence of copper nanoparticles and CTAB, J. Nat. Gas Sci. Eng. 34(2016) 803-810. [113] H. Najibi, M.M. Shayegan, H. Heidary, Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS, J. Nat. Gas Sci. Eng. 23(2015) 315-323. [114] H. Kakati, A. Mandal, S. Laik, Promoting effect of Al2O3/ZnO-based nanofluids stabilized by SDS surfactant on CH4+C2H6+C3H8 hydrate formation, J. Ind. Eng. Chem. 35(2016) 357-368. [115] M. Abdi-Khanghah, M. Adelizadeh, Z. Naserzadeh, H. Barati, Z. Zhang, Methane hydrate formation in the presence of ZnO nanoparticle and SDS:Application to transportation and storage, J. Nat. Gas Sci. Eng. 54(2018) 120-130. [116] A.N. Nesterov, A.M. Reshetnikov, A.Y. Manakov, T.V. Rodionova, E.A. Paukshtis, I.P. Asanov, S.P. Bardakhanov, A.I. Bulavchenko, Promotion and inhibition of gas hydrate formation by oxide powders, J. Mol. Liq. 204(2015) 118-125. [117] F. Wang, G. Guo, G.-Q. Liu, S.-J. Luo, R.-B. Guo, Effects of surfactant micelles and surfactant-coated nanospheres on methane hydrate growth pattern, Chem. Eng. Sci. 144(2016) 108-115. [118] F. Wang, S.-J. Luo, S.-F. Fu, Z.-Z. Jia, M. Dai, C.-S. Wang, R.-B. Guo, Methane hydrate formation with surfactants fixed on the surface of polystyrene nanospheres, J. Mater. Chem. A 3(2015) 8316-8323. [119] F. Wang, Y.-M. Song, G.-Q. Liu, G. Guo, S.-J. Luo, R.-B. Guo, Rapid methane hydrate formation promoted by Ag&SDS-coated nanospheres for energy storage, Appl. Energy 213(2018) 227-234. [120] F. Wang, G. Guo, S.-J. Luo, R.-B. Guo, Preparation of -SO3-coated nanopromoters for methane hydrate formation:Effects of the existence pattern of -SO3- groups on the promotion efficiency, J. Mater. Chem. A 5(2017) 2640-2648. [121] F. Wang, G. Guo, S.-J. Luo, R.-B. Guo, Grafting of nano-Ag particles on -SO3-coated nanopolymers for promoting methane hydrate formation, J. Mater. Chem. A 5(2017) 18486-18493. [122] G.-Q. Liu, F. Wang, S.-J. Luo, D.-Y. Xu, R.-B. Guo, Enhanced methane hydrate formation with SDS-coated Fe3O4 nanoparticles as promoters, J. Mol. Liq. 230(2017) 315-321. [123] F. Wang, G. Guo, S.-J. Luo, R.-B. Guo, H-pi conjugated molecule-based self-assembly of surfactants for promoting methane hydrate formation, ACS Sustain. Chem. Eng. 5(2017) 1408-1415. [124] V. Govindaraj, D. Mech, G. Pandey, R. Nagarajan, J.S. Sangwai, Kinetics of methane hydrate formation in the presence of activated carbon and nano-silica suspensions in pure water, J. Nat. Gas Sci. Eng. 26(2015) 810-818. [125] E. Rezaei, M. Manteghian, M. Tamaddondar, Kinetic study of ethylene hydrate formation in presence of graphene oxide and sodium dodecyl sulfate, J. Petrol. Sci. Eng. 147(2016) 857-863. [126] A. Ghozatloo, M. Hosseini, M. Shariaty-Niassar, Improvement and enhancement of natural gas hydrate formation process by Hummers' graphene, J. Nat. Gas Sci. Eng. 27(2015) 1229-1233. [127] Y.-s. Yu, C.-g. Xu, X.-s. Li, Evaluation of CO2 hydrate formation from mixture of graphite nanoparticle and sodium dodecyl benzene sulfonate, J. Ind. Eng. Chem. 59(2018) 64-69. [128] Y. Song, F. Wang, G. Liu, S. Luo, R. Guo, Promotion effect of carbon nanotubesdoped sds on methane hydrate formation, Energy Fuels 31(2017) 1850-1857. [129] S.-S. Park, S.-B. Lee, N.-J. Kim, Effect of multi-walled carbon nanotubes on methane hydrate formation, J. Ind. Eng. Chem. 16(2010) 551-555. [130] V.D. Chari, D.V.S.G.K. Sharma, P.S.R. Prasad, S.R. Murthy, Methane hydrates formation and dissociation in nano silica suspension, J. Nat. Gas Sci. Eng. 11(2013) 7-11. [131] J. Wang, R. Wang, R.-H. Yoon, Y. Seol, Use of hydrophobic particles as kinetic promoters for gas hydrate formation, J. Chem. Eng. Data 60(2015) 383-388. [132] H. Li, P. Stanwix, Z. Aman, M. Johns, E. May, L. Wang, Raman spectroscopic studies of clathrate hydrate formation in the presence of hydrophobized particles, J. Phys. Chem. A 120(2016) 417-424. [133] N.N. Nguyen, A.V. Nguyen, K.M. Steel, L.X. Dang, M. Galib, Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles, J. Phys. Chem. C 121(2017) 3830-3840. [134] Z. He, P. Linga, J. Jiang, CH4 hydrate formation between silica and graphite surfaces:Insights from microsecond molecular dynamics simulations, Langmuir 33(2017) 11956-11967. [135] S. Al-Adel, J.A.G. Dick, R. El-Ghafari, P. Servio, The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics, Fluid Phase Equilib. 267(2008) 92-98. [136] S.Y. Hong, J.I. Jim, J.H. Kim, J.D. Lee, Kinetic studies on methane hydrate formation in the presence of kinetic inhibitor via in situ Raman spectroscopy, Energy Fuels 26(2012) 7045-7050. [137] S.D. Seo, H.-j. Paik, D.-h. Lim, J.D. Lee, Effects of poly(N-vinylcaprolactam) molecular weight and molecular weight distribution on methane hydrate formation, Energy Fuels 31(2017) 6358-6363. [138] C. Tang, X. Dai, J. Du, D. Li, X. Zang, X. Yang, D. Liang, Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors, Sci. China Chem. 53(2010) 2622-2627. [139] J. Ivall, J. Pasieka, D. Posteraro, P. Servio, Profiling the concentration of the kinetic inhibitor polyvinylpyrrolidone throughout the methane hydrate formation process, Energy Fuels 29(2015) 2329-2335. [140] J.-H. Sa, G.-H. Kwak, K. Han, D. Ahn, S.J. Cho, J.D. Lee, K.-H. Lee, Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids, Sci. Rep. 6(2016) 31582. [141] M.R. Talaghat, F. Esmaeilzadeh, J. Fathikaljahi, Experimental and theoretical investigation of simple gas hydrate formation with or without presence of kinetic inhibitors in a flow mini-loop apparatus, Fluid Phase Equilib. 279(2009) 28-40. [142] S. Xu, S. Fan, S. Fang, Y. Wang, X. Lang, Excellent synergy effect on preventing CH4 hydrate formation when glycine meets polyvinylcaprolactam, Fuel 206(2017) 19-26. [143] H. Kakati, A. Mandal, S. Laik, Synergistic effect of Polyvinylpyrrolidone (PVP) and Ltyrosine on kinetic inhibition of CH4+ C2H4+ C3H8 hydrate formation, J. Nat. Gas Sci. Eng. 34(2016) 1361-1368. [144] A. Cruz-Torres, A. Romero-Martinez, A. Galano, Computational study on the antifreeze glycoproteins as inhibitors of clathrate-hydrate formation, Chemphyschem 9(2008) 1630-1635. [145] N. Daraboina, P. Linga, J. Ripmeester, V.K. Walker, P. Englezos, Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 2. Stirred reactor experiments, Energy Fuels 25(2011) 4384-4391. [146] Y. Xu, M. Yang, X. Yang, Chitosan as green kinetic inhibitors for gas hydrate formation, J. Nat. Gas Chem. 19(2010) 431-435. [147] M.R. Talaghat, Experimental investigation of double gas hydrate formation in the presence of modified starch as a kinetic inhibitor in a flow mini-loop apparatus, Can. J. Chem. Eng. 90(2012) 429-436. [148] C. Xiao, H. Adidharma, Dual function inhibitors for methane hydrate, Chem. Eng. Sci. 64(2009) 1522-1527. [149] A.R. Richard, H. Adidharma, The performance of ionic liquids and their mixtures in inhibiting methane hydrate formation, Chem. Eng. Sci. 87(2013) 270-276. [150] S. Park, H. Ro, J.-W. Lee, H. Kang, H. Lee, Morpholine-induced thermodynamic and kinetic inhibitions on gas hydrate formation, Energy Fuels 27(2013) 6581-6586. [151] O. Nashed, K.M. Sabil, L. Ismail, A. Japper-Jaafar, B. Lal, Mean induction time and isothermal kinetic analysis of methane hydrate formation in water and imidazolium based ionic liquid solutions, J. Chem. Thermodyn. 117(2018) 147-154. [152] W. Lee, J.-Y. Shin, J.-H. Cha, K.-S. Kim, S.-P. Kang, Inhibition effect of ionic liquids and their mixtures with poly(N-vinylcaprolactam) on methane hydrate formation, J. Ind. Eng. Chem. 38(2016) 211-216. [153] W. Lee, J.-Y. Shin, K.-S. Kim, S.-P. Kang, Synergetic effect of ionic liquids on the kinetic inhibition performance of poly(n-vinylcaprolactam) for natural gas hydrate formation, Energy Fuels 30(2016) 9162-9169. [154] K. Nazari, M.R. Moradi, A.N. Ahmadi, Kinetic modeling of methane hydrate formation in the presence of low-dosage water-soluble ionic liquids, Chem. Eng. Technol. 36(2013) 1915-1923. [155] T.M. Chang, L.X. Dang, Liquid-vapor interface of methanol-water mixtures:A molecular dynamics study, J. Phys. Chem. B 109(2005) 5759-5765. [156] M. Wu, S. Wang, H. Liu, A study on inhibitors for the prevention of hydrate formation in gas transmission pipeline, J. Nat. Gas Chem. 16(2007) 81-85. [157] H.K. Abay, T.M. Svartaas, Effect of ultralow concentration of methanol on methane hydrate formation, Energy Fuel 24(2010) 752-757. [158] J. Kim, H. Kim, Y.H. Sohn, D. Chang, Y. Seo, S.-P. Kang, Prevention of methane hydrate re-formation in transport pipeline using thermodynamic and kinetic hydrate inhibitors, J. Petrol. Sci. Eng. 154(2017) 114-125. [159] J.-W. Lee, J. Lee, S.-P. Kang, C-13 NMR spectroscopies and formation kinetics of gas hydrates in the presence of monoethylene glycol as an inhibitor, Chem. Eng. Sci. 104(2013) 755-759. [160] Y.H. Sohn, Y. Seo, Effect of monoethylene glycol and kinetic hydrate inhibitor on hydrate blockage formation during cold restart operation, Chem. Eng. Sci. 168(2017) 444-455. [161] Z. Long, X. Zhou, Y. He, D. Li, D. Liang, Performance of mixture of ethylene glycol and glycine in inhibiting methane hydrate formation, J. Nat. Gas Sci. Eng. 56(2018) 134-140. [162] K. AlHarooni, A. Barifcani, D. Pack, R. Gubner, V. Ghodkay, Inhibition effects of thermally degraded MEG on hydrate formation for gas systems, J. Petrol. Sci. Eng. 135(2015) 608-617. [163] D. Mech, J.S. Sangwai, Effect of molecular weight of polyethylene glycol (PEG), a hydrate inhibitive water-based drilling fluid additive, on the formation and dissociation kinetics of methane hydrate, J. Nat. Gas Sci. Eng. 35(2016) 1441-1452. [164] M. Sina, K. Nazari, M. Mohammad-Taheri, M.R. Moradi, Dual effect of low-dosage poly(ethylene oxides) on methane hydrate formation, Chem. Eng. Technol. 36(2013) 1117-1124. [165] M.R. Talaghat, Intensification of the performance of kinetic inhibitors in the presence of polyethylene oxide and polypropylene oxide for simple gas hydrate formation in a flow mini-loop apparatus, Fluid Phase Equilib. 289(2010) 129-134. [166] M.R. Talaghat, Enhancement of the performance of kinetic inhibitors in the presence of polyethylene oxide and polypropylene oxide for binary mixtures during gas hydrate formation in a flow mini-loop apparatus, Can. J. Chem. Eng. 90(2012) 79-86. [167] N.N. Nguyen, A.V. Nguyen, L.X. Dang, The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants, Fuel 197(2017) 488-496. [168] Z.R. Chong, A.H.M. Chan, P. Babu, M. Yang, P. Linga, Effect of NaCl on methane hydrate formation and dissociation in porous media, J. Nat. Gas Sci. Eng. 27(2015) 178-189. [169] Z. Long, D. Liang, D. Li, Kinetic effect of single MgCl2 and NaCl aqueous solutions on ethane hydrate formation, Can. J. Chem. Eng. 93(2015) 891-896. [170] Z.R. Chong, J.W. Koh, P. Linga, Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments, Energy 137(2017) 518-529. [171] N.N. Nguyen, A.V. Nguyen, The dual effect of sodium halides on the formation of methane gas hydrate, Fuel 156(2015) 87-95. [172] A. Dehghanpoor, F. Varaminian, Study of sodium halide aqueous solutions treatment for ethane hydrate formation kinetics, J. Mol. Liq. 221(2016) 535-540. [173] B. Sowa, X.H. Zhang, P.G. Hartley, D.E. Dunstan, K.A. Kozielski, N. Maeda, Formation of ice, tetrahydrofuran hydrate, and methane/propane mixed gas hydrates in strong monovalent salt solutions, Energy Fuels 28(2014) 6877-6888. [174] E. Chaturvedi, K. Patidar, M. Srungavarapu, S. Laik, A. Mandal, Thermodynamics and kinetics of methane hydrate formation and dissociation in presence of calcium carbonate, Adv. Powder Technol. 29(2018) 1025-1034. |
[1] | Xuejing He, Zhenlin Li, Ji Wang, Hai Yu. Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles[J]. 中国化学工程学报, 2023, 60(8): 16-25. |
[2] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98. |
[3] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration[J]. 中国化学工程学报, 2023, 60(8): 99-107. |
[4] | Xia Miao, Xiaofan Pang, Shiyu Li, Haoguang Wei, Jianhao Yin, Xiangming Kong. Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity[J]. 中国化学工程学报, 2023, 60(8): 118-130. |
[5] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals[J]. 中国化学工程学报, 2023, 59(7): 32-41. |
[6] | Yingxi Gao, Jiayi Shi, Jie Wang, Fan Zhang, Shichao Tian, Zhiyong Zhou, Zhongqi Ren. Enrichment of nervonic acid in Acer truncatum Bunge oil by combination of two-stage molecular distillation, one-stage urea complexation and five-stage solvent crystallization[J]. 中国化学工程学报, 2023, 59(7): 61-71. |
[7] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids[J]. 中国化学工程学报, 2023, 58(6): 179-194. |
[8] | Sanya Du, Xiaomin Han, Wenjiu Cai, Jinlong Zhu, Xiaobai Ma, Songbai Han, Dongfeng Chen, Yusheng Zhao, Hui Li, Hailong Lu, Xiaohui Yu. Formation of the structure-II gas hydrate from low-concentration propane mixed with methane[J]. 中国化学工程学报, 2023, 58(6): 306-314. |
[9] | Lusheng Zhai, Bo Xu, Haiyan Xia, Ningde Jin. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas-liquid slug flow by using ultrasonic Doppler method[J]. 中国化学工程学报, 2023, 58(6): 323-340. |
[10] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization[J]. 中国化学工程学报, 2023, 57(5): 10-16. |
[11] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts[J]. 中国化学工程学报, 2023, 57(5): 39-49. |
[12] | Pengbao Lian, Lizhen Chen, Dan He, Guangyuan Zhang, Zishuai Xu, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in binary solvents[J]. 中国化学工程学报, 2023, 57(5): 173-182. |
[13] | Zhenfu Wang, Jie Gao, Qinghong Shi, Xiaoyan Dong, Yan Sun. Facile purification and immobilization of organophosphorus hydrolase on protein-inorganic hybrid phosphate nanosheets[J]. 中国化学工程学报, 2023, 56(4): 119-125. |
[14] | Jikai Dong, Bing Wang, Xinjie Wang, Chenxi Cao, Shikuan Chen, Wenli Du. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation[J]. 中国化学工程学报, 2023, 56(4): 169-179. |
[15] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface[J]. 中国化学工程学报, 2023, 56(4): 266-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||