中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (10): 2227-2237.DOI: 10.1016/j.cjche.2018.11.012
• Reviews • 下一篇
Li Xia1, Renmin Liu1, Yiting Zeng1, Peng Zhou1, Jingjing Liu1, Xiaorong Cao2, Shuguang Xiang1,2
收稿日期:
2018-09-23
出版日期:
2019-10-28
发布日期:
2020-01-17
通讯作者:
Li Xia, Shuguang Xiang
基金资助:
Li Xia1, Renmin Liu1, Yiting Zeng1, Peng Zhou1, Jingjing Liu1, Xiaorong Cao2, Shuguang Xiang1,2
Received:
2018-09-23
Online:
2019-10-28
Published:
2020-01-17
Contact:
Li Xia, Shuguang Xiang
Supported by:
摘要: The amount of low-temperature heat generated in industrial processes is high, but recycling is limited due to low grade and low recycling efficiency, which is one of the reasons for low energy efficiency. It implies that there is a great potential for low-temperature heat recovery and utilization. This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades, power generation, refrigeration, and thermal energy storage. The detailed description will be given from the aspects of system structure improvement, work medium improvement, and thermodynamic and economic performance evaluation. It also pointed out the development bottlenecks and future development trends of various technologies. The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner, and has great development prospects.
Li Xia, Renmin Liu, Yiting Zeng, Peng Zhou, Jingjing Liu, Xiaorong Cao, Shuguang Xiang. A review of low-temperature heat recovery technologies for industry processes[J]. 中国化学工程学报, 2019, 27(10): 2227-2237.
Li Xia, Renmin Liu, Yiting Zeng, Peng Zhou, Jingjing Liu, Xiaorong Cao, Shuguang Xiang. A review of low-temperature heat recovery technologies for industry processes[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2227-2237.
[1] V. Minea, Power generation with orc machines using low-grade waste heat or renewable energy, Appl. Therm. Eng. 69(1-2) (2014) 143-154. [2] C. Forman, I.K. Muritala, R. Pardemann, et al., Estimating the global waste heat potential, Renew. Sust. Energ. Rev. 57(2016) 1568-1579. [3] T.X. Li, R.Z. Wang, T. Yan, et al., Integrated energy storage and energy upgrade, combined cooling and heating supply, and waste heat recovery with solid-gas thermochemical sorption heat transformer, Int. J. Heat Mass Transf. 76(2014) 237-246. [4] S. Iglesias Garcia, R. Ferreiro Garcia, J. Carbia Carril, et al., A review of thermodynamic cycles used in low temperature recovery systems over the last two years, Renew. Sust. Energ. Rev. 81(Part 1) (2018) 760-767. [5] C. Ji, Z. Qin, S. Dubey, et al., Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow, Appl. Energy 205(2017) 1-12. [6] R.A. Victor, J.-K. Kim, R. Smith, Composition optimisation of working fluids for organic rankine cycles and kalina cycles, Energy 55(2013) 114-126. [7] J. Sarkar, Review and future trends of supercritical CO2 rankine cycle for low-grade heat conversion, Renew. Sust. Energ. Rev. 48(2015) 434-451. [8] P. Donnellan,K. Cronin, E. Byrne,Recycling waste heatenergyusing vapourabsorption heat transformers:A review, Renew. Sust. Energ. Rev. 42(2015) 1290-1304. [9] L. Ni, J. Dong, Y. Yao, et al., A review of heat pump systems for heating and cooling of buildings in China in the last decade, Renew. Energy 84(2015) 30-45. [10] J. Zhang, H.-H. Zhang, Y.-L. He, et al., A comprehensive review on advances and applications of industrial heat pumps based on the practices in China, Appl. Energy 178(2016) 800-825. [11] Q. Wang, X. Liu, X. Guo, Application of waste heat recovery technology in union station and analysis of energy efficiency, Procedia Eng. 205(2017) 3860-3866. [12] J. Ibarra-Bahena, R. Romero, Performance of different experimental absorber designs in absorption heat pump cycle technologies:A review, Energies 7(2) (2014) 751-766. [13] S. Aprhornratana, I.W. Eames, Thermodynamic analysis of absorption refrigeration cycles using the second law of thermodynamics method, Int. J. Refrig. 18(4) (1995) 244-252. [14] M. Kilic, O. Kaynakli, Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system, Energy 32(8) (2007) 1505-1512. [15] K.C. Ng, K. Tu, H.T. Chua, et al., Thermodynamic analysis of absorption chillers:Internal dissipation and process average temperature, Appl. Therm. Eng. 18(8) (1998) 671-682. [16] J.-K. Kim, C.W. Park, Y.T. Kang, The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film h2o/libr absorber, Int. J. Refrig. 26(5) (2003) 575-585. [17] Y. Li, L. Wang, M. Zhu, et al., Optimization study of distillation column based on type i absorption heat pump, Appl. Therm. Eng. 116(2017) 33-42. [18] Y. Ru, The Application Research of Absorption Heatpump Technology in the Recycle of Industrialexhaust Heat, PhD Thesis, Taiyuan University of Technology, China (in Chinese), 2012. [19] D.M. Martini, S.W. Harold, S.P. Christopher, et al., Absorption over-concentration control, 1996, EP0836060. EU Pat. [20] X. Wang, H.T. Chua, Absorption cooling:A review of lithium bromide-water chiller technologies, Recent Pat. Mech. Eng. 2(3) (2009) 193-213. [21] K. Wang, O. Abdelaziz, P. Kisari, et al., State-of-the-art review on crystallization control technologies for water/libr absorption heat pumps, Int. J. Refrig. 34(6) (2011) 1325-1337. [22] L.G. Farshi, S. Khalili, A.H. Mosaffa, Thermodynamic analysis of a cascaded compression-absorption heat pump and comparison with three classes of conventional heat pumps for the waste heat recovery, Appl. Therm. Eng. 128(2018) 282-296. [23] Z. Zhao, X. Zhang, X. Ma, Thermodynamic performance of a double-effect absorption heat-transformer using tfe/e181 as the working fluid, Appl. Energy 82(2) (2005) 107-116. [24] B. Ye, J. Liu, X. Xu, et al., A new open absorption heat pump for latent heat recovery from moist gas, Energy Convers. Manag. 94(2015) 438-446. [25] W. Wu, W. Shi, B. Wang, et al., A new heating system based on coupled air source absorption heat pump for cold regions:Energy saving analysis, Energy Convers. Manag. 76(2013) 811-817. [26] F. Li, L. Duanmu, L. Fu, et al., Research and application of flue gas waste heat recovery in co-generation based on absorption heat-exchange, Procedia Eng. 146(2016) 594-603. [27] X.-Q. Cao, W.-W. Yang, F. Zhou, et al., Performance analysis of different hightemperature heat pump systems for low-grade waste heat recovery, Appl. Therm. Eng. 71(1) (2014) 291-300. [28] Q. Wang, W. He, Y. Liu, et al., Vapor compression multifunctional heat pumps in China:A review of configurations and operational modes, Renew. Sust. Energ. Rev. 16(9) (2012) 6522-6538. [29] L. Zhang, Y. Jiang, J. Dong, et al., Advances in vapor compression air source heat pumpsystemincoldregions:A review, Renew. Sust. Energ. Rev. 81(2018)353-365. [30] R.S. Adhikari, N. Aste, M. Manfren, et al., Energy savings through variable speed compressor heat pump systems, Energy Procedia 14(2012) 1337-1342. [31] Y. Ko, S. Park, S. Jin, et al., The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle, Appl. Energy 104(2013) 187-196. [32] G. Yan, Q. Jia, T. Bai, Experimental investigation on vapor injection heat pump with a newly designed twin rotary variable speed compressor for cold regions, Int. J. Refrig. 62(2016) 232-241. [33] X. Lv, G. Yan, J. Yu, Solar-assisted auto-cascade heat pump cycle with zeotropic mixture r32/r290 for small water heaters, Renew. Energy 76(2015) 167-172. [34] C. Baek, J. Heo, J. Jung, et al., Performance characteristics of a two-stage co2 heat pump water heater adopting a sub-cooler vapor injection cycle at various operating conditions, Energy 77(2014) 570-578. [35] A. Redón, E. Navarro-Peris, M. Pitarch, et al., Analysis and optimization of subcritical two-stage vapor injection heat pump systems, Appl. Energy 124(2014) 231-240. [36] Y. Li, J. Yu, Theoretical analysis on optimal configurations of heat exchanger and compressor in a two-stage compression air source heat pump system, Appl. Therm. Eng. 96(2016) 682-689. [37] S. Jiang, S. Wang, X. Jin, et al., Optimum compressor cylinder volume ratio for twostage compression air source heat pump systems, Int. J. Refrig. 67(2016) 77-89. [38] Q. Zhou, R. Radermacher, Development of a vapor compression cycle with a solution circuit and desorber/absorber heat exchange, Int. J. Refrig. 20(2) (1997) 85-95. [39] M. Hultén, T. Berntsson, The compression/absorption cycle-influence of some major parameters on cop and a comparison with the compression cycle, Int. J. Refrig. 22(2) (1999) 91-106. [40] M. Hultén, T. Berntsson, The compression/absorption heat pump cycle-conceptual design improvements and comparisons with the compression cycle, Int. J. Refrig. 25(4) (2002) 487-497. [41] W. Wu, W. Shi, J. Wang, et al., Experimental investigation on nh3-h2o compressionassisted absorption heat pump (cahp) for low temperature heating under lower driving sources, Appl. Energy 176(2016) 258-271. [42] W. Wu, B. Wang, S. Shang, et al., Experimental investigation on nh 3-h 2 o compression-assisted absorption heat pump (cahp) for low temperature heating in colder conditions, Int. J. Refrig. 67(2016) 109-124. [43] G.L. M, M. M, Effect of the design variables on the energy performance and size parameters of a heat transformer based on the system acetone/h2/2-propanol, Int. J. Energy Res. 16(9) (1992) 851-864. [44] H. Bao, Z. Ma, A.P. Roskilly, Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation, Appl. Energy 164(2016) 228-236. [45] Y. Chung, B.-J. Kim, Y.-K. Yeo, et al., Optimal design of a chemical heat pump using the 2-propanol/acetone/hydrogen system, Energy 22(5) (1997) 525-536. [46] M.I. Fadhel, K. Sopian, W.R.W. Daud, et al., Review on advanced of solar assisted chemical heat pump dryer for agriculture produce, Renew. Sust. Energ. Rev. 15(2) (2011) 1152-1168. [47] W. Wongsuwan, S. Kumar, P. Neveu, et al., A review of chemical heat pump technology and applications, Appl. Therm. Eng. 21(15) (2001) 1489-1519. [48] M. Xu, J. Cai, J. Guo, et al., Technical and economic feasibility of the isopropanolacetone-hydrogen chemical heat pump based on a lab-scale prototype, Energy 139(2017) 1030-1039. [49] L.M. Gandia, A. Diaz, M. Montes, Selectivity in the high-temperature hydrogenation of acetone with silica-supported nickel and cobalt catalysts, J. Catal. 157(2) (1995) 461-471. [50] W. Mooksuwan, S. Kumar, Study on 2-propanol/acetone/hydrogen chemical heat pump:Endothermic dehydrogenation of 2-propanol, Int. J. Energy Res. 24(12) (2000) 1109-1122. [51] I. Klinsoda, P. Piumsomboon, Isopropanol-acetone-hydrogen chemical heat pump:A demonstration unit, Energy Convers. Manag. 48(4) (2007) 1200-1207. [52] M. Xu, F. Xin, X. Li, et al., Equilibrium model and performances of an isopropanol-acetone-hydrogen chemical heat pump with a reactive distillation column, Ind. Eng. Chem. Res. 52(11) (2013) 4040-4048. [53] X. Zhou, Y. Duan, X. Huai, et al., 3d cfd modeling of acetone hydrogenation in fixed bed reactor with spherical particles, Particuology 11(6) (2013) 715-722. [54] M. Xu, Y. Duan, F. Xin, et al., Design of an isopropanol-acetone-hydrogen chemical heat pump with exothermic reactors in series, Appl. Therm. Eng. 71(1) (2014) 445-449. [55] L.M. Gandia, M. Montes, Effect of the design variables on the energy performance and size parameters of a heat transformer based on the system acetone/h2/2-propanol, Int. J. Energy Res. 16(9) (1992) 851-864. [56] T.G. Kim, Y.K. Yeo, H.K. Song, Chemical heat pump based on dehydrogenation and hydrogenation of i-propanol and acetone, Int. J. Energy Res. 16(9) (1992) 897-916. [57] D.W. Sun, Thermodynamic analysis of the operation of two-stage metal-hydride heat pumps, Appl. Energy 54(1) (1996) 29-47. [58] A. Satheesh, P. Muthukumar, Simulation of double-stage double-effect metal hydride heat pump, Int. J. Hydrog. Energy 35(3) (2010) 1474-1484. [59] H.P. Klein, M. Groll, Development of a two-stage metal hydride system as topping cycle in cascading sorption systems for cold generation, Appl. Therm. Eng. 22(6) (2002) 631-639. [60] A. Satheesh, P. Muthukumar, Performance investigation of double-stage metal hydride based heat pump, Appl. Therm. Eng. 30(17-18) (2010) 2698-2707. [61] E. Mastronardo, L. Bonaccorsi, Y. Kato, et al., Efficiency improvement of heat storage materials for mgo/h2o/mg(oh)2 chemical heat pumps, Appl. Energy 162(2016) 31-39. [62] B.B. Saha, S. Koyama, K. Choon Ng, et al., Study on a dual-mode, multi-stage, multibed regenerative adsorption chiller, Renew. Energy 31(13) (2006) 2076-2090. [63] E. Mastronardo, L. Bonaccorsi, Y. Kato, et al., Thermochemical performance of carbon nanotubes based hybrid materials for mgo/h2o/mg(oh)2 chemical heat pumps, Appl. Energy 181(2016) 232-243. [64] L. Calabrese, L. Bonaccorsi, A. Freni, et al., Synthesis of sapo-34 zeolite filled macrocellular foams for adsorption heat pump applications:A preliminary study, Appl. Therm. Eng. 124(2017) 1312-1318. [65] E. Elsayed, R. Al-Dadah, S. Mahmoud, et al., Aluminium fumarate and cpo-27(ni) mofs:Characterization and thermodynamic analysis for adsorption heat pump applications, Appl. Therm. Eng. 99(2016) 802-812. [66] T.H. Herzog, J. Jänchen, Adsorption properties of modified zeolites for operating range enhancement of adsorption heat pumps through the use of organic adsorptive agents, Energy Procedia 91(2016) 155-160. [67] M. Bianchi, L. Branchini, A. De Pascale, et al., Experimental performance of a microorc energy system for low grade heat recovery, Energy Procedia 129(2017) 899-906. [68] S.-Y. Cho, C.-H. Cho, K.-Y. Ahn, et al., A study of the optimal operating conditions in the organic rankine cycle using a turbo-expander for fluctuations of the available thermal energy, Energy 64(2014) 900-911. [69] M. Imran, M. Usman, B.-S. Park, et al., Multi-objective optimization of evaporator of organic rankine cycle (orc) for low temperature geothermal heat source, Appl. Therm. Eng. 80(2015) 1-9. [70] N.F. Tumen Ozdil, M.R. Segmen, Investigation of the effect of the water phase in the evaporator inlet on economic performance for an organic rankine cycle (orc) based on industrial data, Appl. Therm. Eng. 100(2016) 1042-1051. [71] D.Y. Kim, Thermal performance of brazed metalfoam-plate heat exchanger as an evaporator for organic Rankine cycle, Energy Procedia 129(2017) 451-458. [72] H. Liu, H. Zhang, F. Yang, et al., Multi-objective optimization of fin-and-tube evaporator for a diesel engine-organic rankine cycle (orc) combined system using particle swarm optimization algorithm, Energy Convers. Manag. 151(2017) 147-157. [73] K. Hu, J. Zhu, W. Zhang, et al., Effects of evaporator superheat on system operation stability of an organic rankine cycle, Appl. Therm. Eng. 111(2017) 793-801. [74] E. Sauret, Y. Gu, Three-dimensional off-design numerical analysis of an organic rankine cycle radial-inflow turbine, Appl. Energy 135(2014) 202-211. [75] D. Fiaschi, G. Manfrida, F. Maraschiello, Design and performance prediction of radial orc turboexpanders, Appl. Energy 138(2015) 517-532. [76] B. Ssebabi, R.T. Dobson, A.B. Sebitosi, Characterising a turbine for application in an organic rankine cycle, Energy 93(2015) 1617-1632. [77] K. Rahbar, S. Mahmoud, R.K. Al-Dadah, et al., Parametric analysis and optimization of a small-scale radial turbine for organic rankine cycle, Energy 83(2015) 696-711. [78] K. Rahbar, S. Mahmoud, R.K. Al-Dadah, et al., Modelling and optimization of organic rankine cycle based on a small-scale radial inflow turbine, Energy Convers. Manag. 91(2015) 186-198. [79] A. Al Jubori, A. Daabo, R.K. Al-Dadah, et al., Development of micro-scale axial and radial turbines for low-temperature heat source driven organic rankine cycle, Energy Convers. Manag. 130(2016) 141-155. [80] J. Song, C.-W. Gu, X. Ren, Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the organic rankine cycle (orc) system, Energy Convers. Manag. 123(2016) 308-316. [81] A.M. Al Jubori, R. Al-Dadah, S. Mahmoud, An innovative small-scale two-stage axial turbine for low-temperature organic rankine cycle, Energy Convers. Manag. 144(2017) 18-33. [82] C.S. From, E. Sauret, S. Armfield, et al., Turbulent dense gas flow characteristics in swirling conical diffuser, Comput. Fluids 149(3) (2017) 100-118. [83] A.I. Papadopoulos, M. Stijepovic, P. Linke, et al., Multi-level design and selection of optimum working fluids and orc systems for power and heat cogeneration from low enthalpy renewable sources, in:I.D.L. Bogle, M. Fairweather (Eds.), Computer Aided Chemical Engineering, vol. 30, Elsevier 2012, pp. 66-70. [84] P. Linke, A. Papadopoulos, P. Seferlis, Systematic methods for working fluid selection and the design, integration and control of organic rankine cycles-a review, Energies 8(6) (2015) 4755. [85] B.-T. Liu, K.-H. Chien, C.-C. Wang, Effect of working fluids on organic rankine cycle for waste heat recovery, Energy 29(8) (2004) 1207-1217. [86] M. Li, B. Zhao, Analytical thermal efficiency of medium-low temperature organic rankine cycles derived from entropy-generation analysis, Energy 106(2016) 121-130. [87] R. Radermacher, Thermodynamic and heat transfer implications of working fluid mixtures in rankine cycles, Int. J. Heat Fluid Flow 10(2) (1989) 90-102. [88] J.G. Andreasen, U. Larsen, T. Knudsen, et al., Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic rankine cycles, Energy 73(2014) 204-213. [89] K. Braimakis, M. Preißinger, D. Brüggemann, et al., Low grade waste heat recovery with subcritical and supercritical organic rankine cycle based on natural refrigerants and their binary mixtures, Energy 88(2015) 80-92. [90] S. Lecompte, B. Ameel, D. Ziviani, et al., Exergy analysis of zeotropic mixtures as working fluids in organic rankine cycles, Energy Convers. Manag. 85(2014) 727-739. [91] K. Satanphol, W. Pridasawas, B. Suphanit, A study on optimal composition of zeotropic working fluid in an organic rankine cycle (orc) for low grade heat recovery, Energy 123(2017) 326-339. [92] S. Lecompte, H. Huisseune, M. Van Den Broek, et al., Review of organic rankine cycle (orc) architectures for waste heat recovery, Renew. Sust. Energ. Rev. 47(2015) 448-461. [93] Z. Gnutek, A. Bryszewska-Mazurek, The thermodynamic analysis of multicycle orc engine, Energy 26(12) (2001) 1075-1082. [94] H.G. Zhang, E.H. Wang, B.Y. Fan, A performance analysis of a novel system of a dual loop bottoming organic rankine cycle (orc) with a light-duty diesel engine, Appl. Energy 102(2013) 1504-1513. [95] N. Yamada, M. Watanabe, A. Hoshi, Experiment on pumpless rankine-type cycle with scroll expander, Energy 49(2013) 137-145. [96] H. Bao, Z. Ma, A.P. Roskilly, Chemisorption power generation driven by low grade heat-theoretical analysis and comparison with pumpless orc, Appl. Energy 186(Part 3) (2017) 282-290. [97] M. Li, J. Wang, W. He, et al., Construction and preliminary test of a low-temperature regenerative organic rankine cycle (orc) using r123, Renew. Energy 57(2013) 216-222. [98] S. Declaye, S. Quoilin, L. Guillaume, et al., Experimental study on an open-drive scroll expander integrated into an orc (organic rankine cycle) system with r245fa as working fluid, Energy 55(2013) 173-183. [99] M. Imran, M. Usman, B.-S. Park, et al., Volumetric expanders for low grade heat and waste heat recovery applications, Renew. Sust. Energ. Rev. 57(2016) 1090-1109. [100] G. Shu, G. Yu, H. Tian, et al., Multi-approach evaluations of a cascade-organic rankine cycle (c-orc) system driven by diesel engine waste heat:Part a-Thermodynamic evaluations, Energy Convers. Manag. 108(2016) 579-595. [101] G. Yu, G. Shu, H. Tian, et al., Multi-approach evaluations of a cascade-organic rankine cycle (c-orc) system driven by diesel engine waste heat:Part b-technoeconomic evaluations, Energy Convers. Manag. 108(2016) 596-608. [102] X. Zhang, M. He, Y. Zhang, A review of research on the kalina cycle, Renew. Sust. Energ. Rev. 16(7) (2012) 5309-5318. [103] L. Cao, J. Wang, L. Chen, et al., Comprehensive analysis and optimization of kalinaflash cycles for low-grade heat source, Appl. Therm. Eng. 131(2018) 540-552. [104] M. Fallah, S.M.S. Mahmoudi, M. Yari, et al., Advanced exergy analysis of the kalina cycle applied for low temperature enhanced geothermal system, Energy Convers. Manag. 108(2016) 190-201. [105] F. Sun, W. Zhou, Y. Ikegami, et al., Energy-exergy analysis and optimization of the solar-boosted kalina cycle system 11(kcs-11), Renew. Energy 66(2014) 268-279. [106] J. He, C. Liu, X. Xu, et al., Performance research on modified kcs (kalina cycle system) 11 without throttle valve, Energy 64(2014) 389-397. [107] V. Zare, V. Palideh, Employing thermoelectric generator for power generation enhancement in a kalina cycle driven by low-grade geothermal energy, Appl. Therm. Eng. 130(2018) 418-428. [108] Nasruddin, R. Usvika, M. Rifaldi, et al., Energy and exergy analysis of kalina cycle system (kcs) 34 with mass fraction ammonia-water mixture variation, J. Mech. Sci. Technol. 23(7) (2009) 1871-1876. [109] O. Arslan, Power generation from medium temperature geothermal resources:Ann-based optimization of kalina cycle system-34, Energy 36(5) (2011) 2528-2534. [110] P.K. Nag, A.V.S.S.K.S. Gupta, Exergy analysis of the kalina cycle, Appl. Therm. Eng. 18(6) (1998) 427-439. [111] J.Y. Wang, J.F. Wang, Y.P. Dai, et al., Assessment of off-design performance of a kalina cycle driven by low-grade heat source, Energy 138(2017) 459-472. [112] K. Jonshagen, M. Genrup, Improved load control for a steam cycle combined heat and power plant, Energy 35(4) (2010) 1694-1700. [113] E. Wang, Z. Yu, F. Zhang, Investigation on efficiency improvement of a kalina cycle by sliding condensation pressure method, Energy Convers. Manag. 151(2017) 123-135. [114] E. Wang, Z. Yu, A numerical analysis of a composition-adjustable kalina cycle power plant for power generation from low-temperature geothermal sources, Appl. Energy 180(2016) 834-848. [115] Z. Guo, Z. Zhang, Y. Chen, et al., Dual-pressure vaporization kalina cycle for cascade reclaiming heat resource for power generation, Energy Convers. Manag. 106(2015) 557-565. [116] T. Eller, F. Heberle, D. Brüggemann, Second law analysis of novel working fluid pairs for waste heat recovery by the kalina cycle, Energy 119(2017) 188-198. [117] G. Khankari, J. Munda, S. Karmakar, Power generation from condenser waste heat in coal-fired thermal power plant using kalina cycle, Energy Procedia 90(2016) 613-624. [118] R. Maryami, A.A. Dehghan, An exergy based comparative study between libr/water absorption refrigeration systems from half effect to triple effect, Appl. Therm. Eng. 124(2017) 103-123. [119] Y. Tae Kang, A. Akisawa, T. Kashiwagi, Analytical investigation of two different absorption modes:Falling film and bubble types, Int. J. Refrig. 23(6) (2000) 430-443. [120] F. Su, H.B. Ma, H. Gao, Characteristic analysis of adiabatic spray absorption process in aqueous lithium bromide solution, Int. Commun. Heat Mass Transfer 38(4) (2011) 425-428. [121] A. Zacarías, M. Venegas, A. Lecuona, et al., Experimental assessment of vapour adiabatic absorption into solution droplets using a full cone nozzle, Exp. Thermal Fluid Sci. 68(2015) 228-238. [122] E. Palacios, M. Izquierdo, J.D. Marcos, et al., Evaluation of mass absorption in libr flat-fan sheets, Appl. Energy 86(12) (2009) 2574-2582. [123] S.M. Osta-Omar, C. Micallef, Effect of the vapour-solution interface area on a miniature lithium-bromide/water absorption refrigeration system equipped with an adiabatic absorber, Energy Procedia 118(2017) 243-247. [124] D.-W. Sun, I.W. Eames, S. Aphornratana, Evaluation of a novel combined ejectorabsorption refrigeration cycle-I:Computer simulation, Int. J. Refrig. 19(3) (1996) 172-180. [125] P. Srikhirin, S. Aphornratana, S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sust. Energ. Rev. 5(4) (2001) 343-372. [126] H.S. Majdi, Performance evaluation of combined ejector libr/h2o absorption cooling cycle, Case Stud. Therm. Eng. 7(2016) 25-35. [127] Z.Y. Xu, R.Z. Wang, Z.Z. Xia, A novel variable effect libr-water absorption refrigeration cycle, Energy 60(2013) 457-463. [128] R. Saravanan, M.P. Maiya, Thermodynamic comparison of water-based working fluid combinations for a vapour absorption refrigeration system, Appl. Therm. Eng. 18(7) (1998) 553-568. [129] X. She, Y. Yin, M. Xu, et al., A novel low-grade heat-driven absorption refrigeration system with licl-h2o and libr-h2o working pairs, Int. J. Refrig. 58(2015) 219-234. [130] N. Li, C. Luo, Q. Su, A working pair of cacl2-libr-lino3/h2o and its application in a single-stage solar-driven absorption refrigeration cycle, Int. J. Refrig. 86(2018) 1-13. [131] S.-Y. Wu, H. Yang, L. Xiao, et al., Comparative investigation on thermo-economic performance between orc and libr absorption refrigerating cycle in waste heat recovery, Energy Procedia 105(2017) 1446-1453. [132] D.-W. Sun, Comparison of the performances of nh3-h2o, nh3-lino3 and nh3-nascn absorption refrigeration systems, Energy Convers. Manag. 39(5-6) (1998) 357-368. [133] F. Táboas, M. Bourouis, M. Vallès, Boiling heat transfer and pressure drop of nh3/lino3 and nh3/(lino3+h2o) in a plate heat exchanger, Int. J. Therm. Sci. 105(2016) 182-194. [134] Y. Liang, S. Li, X. Yue, et al., Analysis of nh3-h2o-libr absorption refrigeration integrated with an electrodialysis device, Appl. Therm. Eng. 115(2017) 134-140. [135] D. Cai, J. Jiang, G. He, et al., Experimental evaluation on thermal performance of an air-cooled absorption refrigeration cycle with nh3-lino3 and nh3-nascn refrigerant solutions, Energy Convers. Manag. 120(2016) 32-43. [136] A. Myat, K. Thu, Y.-D. Kim, et al., A second law analysis and entropy generation minimization of an absorption chiller, Appl. Therm. Eng. 31(14) (2011) 2405-2413. [137] X. Chen, R.Z. Wang, S. Du, An improved cycle for large temperature lifts application in water-ammonia absorption system, Energy 118(2017) 1361-1369. [138] C.P. Jawahar, R. Saravanan, Generator absorber heat exchange based absorption cycle-a review, Renew. Sust. Energ. Rev. 14(8) (2010) 2372-2382. [139] Q.W. Liu, Performance Studies on nh3-h2o Absorption Refrigerationhgax Cycles Using Low Temperature Exhaust Heat, PhD Thesis, DalianUniversity of Technology, China, 2012(in Chinese). [140] P. Lin, R.Z. Wang, Z.Z. Xia, Numerical investigation of a two-stage air-cooled absorption refrigeration system for solar cooling:Cycle analysis and absorption cooling performances, Renew. Energy 36(5) (2011) 1401-1412. [141] W. Wu, X. Zhang, X. Li, et al., Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions, Appl. Therm. Eng. 48(2012) 349-358. [142] S. Du, R.Z. Wang, X. Chen, Analysis on maximum internal heat recovery of a masscoupled two stage ammonia water absorption refrigeration system, Energy 133(2017) 822-831. [143] A.H. Mosaffa, L.G. Farshi, C.A. Infante Ferreira, et al., Exergoeconomic and environmental analyses of co2/nh3 cascade refrigeration systems equipped with different types of flash tank intercoolers, Energy Convers. Manag. 117(2016) 442-453. [144] T.-S. Lee, C.-H. Liu, T.-W. Chen, Thermodynamic analysis of optimal condensing temperature of cascade-condenser in co2/nh3 cascade refrigeration systems, Int. J. Refrig. 29(7) (2006) 1100-1108. [145] H.M. Getu, P.K. Bansal, Thermodynamic analysis of an r744-r717 cascade refrigeration system, Int. J. Refrig. 31(1) (2008) 45-54. [146] M. Ma, J. Yu, X. Wang, Performance evaluation and optimal configuration analysis of a co2/nh3 cascade refrigeration system with falling film evaporator-condenser, Energy Convers. Manag. 79(2014) 224-231. [147] K. Wang, A. Vineyard Edward, Adsorption refrigeration:New opportunities for solar, ASHRAE Journal 9(2011) 14-24. [148] D.C. Wang, Y.H. Li, D. Li, et al., A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems, Renew. Sust. Energ. Rev. 14(1) (2009) 344-353. [149] Q. Ma, L. Luo, R.Z. Wang, et al., A review on transportation of heat energy over long distance:Exploratory development, Renew. Sust. Energ. Rev. 13(6) (2009) 1532-1540. [150] M. Yang, S.Y. Lee, J.T. Chung, et al., High efficiency H2O/libr double effect absorption cycles with multi-heat sources for tri-generation application, Appl. Energy 187(2017) 243-254. [151] S.Z. Xu, L.W. Wang, R.Z. Wang, Thermodynamicanalysisofmass andheatrecoveryadsorptionrefrigeration cyclesand schemeselection, J. Chem. Ind. 67(6) (2016) 2202-2210. [152] T.F. Qu, R.Z. Wang, W. Wang, Study on heat and mass recovery in adsorption refrigeration cycles, Appl. Therm. Eng. 21(4) (2001) 439-452. [153] A. Akahira, K.C.A. Alam, Y. Hamamoto, et al., Experimental investigation of mass recovery adsorption refrigeration cycle, Int. J. Refrig. 28(4) (2005) 565-572. [154] R.Z. Wang, Performance improvement of adsorption cooling by heat and mass recovery operation, Int. J. Refrig. 24(7) (2001) 602-611. [155] K.C.A. Alam, A. Akahira, Y. Hamamoto, et al., A four-bed mass recovery adsorption refrigeration cycle driven by low temperature waste/renewable heat source, Renew. Energy 29(9) (2004) 1461-1475. [156] L.W. Wang, R.Z. Wang, Z.S. Lu, et al., Comparison of the adsorption performance of compound adsorbent in a refrigeration cycle with and without mass recovery, Chem. Eng. Sci. 61(11) (2006) 3761-3770. [157] Y. Lu, H. Bao, Y. Yuan, et al., Optimisation of a novel resorption cogeneration using mass and heat recovery, Energy Procedia 61(2014) 1103-1106. [158] H.J. Dakkama, A. Elsayed, R.K. Al-Dadah, et al., Integrated evaporator-condenser cascaded adsorption system for low temperature cooling using different working pairs, Appl. Energy 185(Part 2) (2017) 2117-2126. [159] Y. Liu, K.C. Leong, Numerical study of a novel cascading adsorption cycle, Int. J. Refrig. 29(2) (2006) 250-259. [160] L. Lu, Research on Industrial Waste Heat Applied to Mobile energyStorage for Heating Supply, PhD Thesis, DalianUniversity of Technology, China, 2016(in Chinese). [161] G. Alva, Y. Lin, G. Fang, An overview of thermal energy storage systems, Energy 144(2018) 341-378. [162] G.R. Dheep, A. Sreekumar, Investigation on thermal reliability and corrosion characteristics of glutaric acid as an organic phase change material for solar thermal energy storage applications, Appl. Therm. Eng. 129(2018) 1189-1196. [163] M. Walczak, F. Pineda, G. Fernández, et al., Materials corrosion for thermal energy storage systems in concentrated solar power plants, Renew. Sust. Energ. Rev. 86(2018) 22-44. [164] R.K. Sharma, P. Ganesan, V.V. Tyagi, et al., Developments in organic solid-liquid phase change materials and their applications in thermal energy storage, Energy Convers. Manag. 95(2015) 193-228. [165] J. Gasia, L. Miró, L.F. Cabeza, Review on system and materials requirements for high temperature thermal energy storage. Part 1:General requirements, Renew. Sust. Energ. Rev. 75(2017) 1320-1338. [166] D. Jaya Krishna, A. Shinde, Step by step methodology for the assessment of metal corrosion rate with pcms suitable for low temperature heat storage applications, Mater Today Proc. 4(9) (2017) 10039-10042. [167] A.I. Fernandez, M. Martínez, M. Segarra, et al., Selection of materials with potential in sensible thermal energy storage, Sol. Energy Mater. Sol. Cells 94(10) (2010) 1723-1729. [168] W. Wang, S. Guo, H. Li, et al., Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (m-tes), Appl. Energy 119(2014) 181-189. [169] R. Sharma, E. Anil Kumar, Study of ammoniated salts based thermochemical energy storage system with heat up-gradation:A thermodynamic approach, Energy 141(2017) 1705-1716. [170] M. Karthik, A. Faik, B. D'Aguanno, Graphite foam as interpenetrating matrices for phase change paraffin wax:A candidate composite for low temperature thermal energy storage, Sol. Energy Mater. Sol. Cells 172(2017) 324-334. [171] Z. Jiang, G. Leng, F. Ye, et al., Form-stable lino 3-nano 3-kno 3-ca(no 3) 2/calcium silicate composite phase change material (pcm) for mid-low temperature thermal energy storage, Energy Convers. Manag. 106(2015) 165-172. [172] M. Deckert, R. Scholz, S. Binder, et al., Economic efficiency of mobile latent heat storages, Energy Procedia 46(2014) 171-177. [173] J. Wu, Z. Yang, Q. Wu, et al., Transient behavior and dynamic performance of cascade heat pump water heater with thermal storage system, Appl. Energy 91(1) (2012) 187-196. [174] Z. He, Y. Zhang, Z. Wu, et al., Experimental study on a bifunctional heat utilization system of heat pump and power generation using low-grade heat source, Appl. Therm. Eng. 124(2017) 71-82. [175] J. Rashidi, P. Ifaei, I.J. Esfahani, et al., Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on kalina and absorption refrigeration cycles, Energy Convers. Manag. 127(2016) 170-186. |
[1] | Kejin Huang, Shuaishuai Han, Lijing Zang, Haisheng Chen, Yihang Luo, Liang Zhang, Yang Yuan, Xing Qian, Shaofeng Wang. Configuring topologically optimum vapor recompressed dividing-wall distillation columns to maximize operating efficiency[J]. 中国化学工程学报, 2023, 57(5): 247-264. |
[2] | Xinhao Li, Qing Ye, Jinlong Li, Lingqiang Yan, Xue Jian, Licheng Xie, Jianyu Zhang. Investigation of energy-efficient heat pump assisted heterogeneous azeotropic distillation for separating of acetonitrile/ethyl acetate/n-hexane mixture[J]. 中国化学工程学报, 2023, 55(3): 20-33. |
[3] | Danlei Chen, Yiqing Luo, Xigang Yuan. Refrigeration system synthesis based on de-redundant model by particle swarm optimization algorithm[J]. 中国化学工程学报, 2022, 50(10): 412-422. |
[4] | Chunxiao Zhang, Yingjie Li, Zhiguo Bian, Wan Zhang, Zeyan Wang. Simultaneous CO2 capture and thermochemical heat storage by modified carbide slag in coupled calcium looping and CaO/Ca(OH)2 cycles[J]. 中国化学工程学报, 2021, 36(8): 76-85. |
[5] | Zhangke Ma, Yingjie Li, Boyu Li, Zeyan Wang, Tao Wang, Wentao Lei. Calcium looping heat storage performance and mechanical property of CaO-based pellets under fluidization[J]. 中国化学工程学报, 2021, 36(8): 170-180. |
[6] | Hamed Rezaie Azizabadi, Masoud Ziabasharhagh, Mostafa Mafi. Introducing a proper hydrogen liquefaction concept for using wasted heat of thermal power plants-case study: Parand gas power plant[J]. 中国化学工程学报, 2021, 40(12): 187-196. |
[7] | Lijing Zang, Kejin Huang, Yang Yuan, Xing Qian, Liang Zhang, Haisheng Chen, Shaofeng Wang. Vapor recompressed dividing-wall distillation columns: Structure and performance[J]. 中国化学工程学报, 2020, 28(7): 1891-1897. |
[8] | Meng Yu, Zhiyun Zou. Design of structure and control system of semiconductor refrigeration box[J]. 中国化学工程学报, 2020, 28(11): 2792-2798. |
[9] | Zilong Deng, Suchen Wu, Hao Xu, Yongping Chen. Melting heat transfer enhancement of a horizontal latent heat storage unit by fern-fractal fins[J]. 中国化学工程学报, 2020, 28(11): 2857-2871. |
[10] | Suchen Wu, Yiwen Ding, Chengbin Zhang, Dehao Xu. Improving the performance of a thermoelectric power system using a flat-plate heat pipe[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 44-53. |
[11] | Tao Yang, Yiqing Luo, Yingjie Ma, Xigang Yuan. Optimal synthesis of compression refrigeration system using a novel MINLP approach[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1662-1669. |
[12] | Danlei Chen, Xue Ma, Yiqing Luo, Yingjie Ma, Xigang Yuan. Synthesis of refrigeration system based on generalized disjunctive programming model[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1613-1620. |
[13] | Grazia Leonzio. An innovative trigeneration system using biogas as renewable energy[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1179-1191. |
[14] | Thing Chai Tham, Mei Xiang Ng, Shu Hui Gan, Lee Suan Chua, Ramlan Aziz, Luqman Chuah Abdullah, Sze Pheng Ong, Nyuk Ling Chin, Chung Lim Law. Impacts of different drying strategies on drying characteristics, the retention of bio-active ingredient and colour changes of dried Roselle[J]. Chinese Journal of Chemical Engineering, 2018, 26(2): 303-316. |
[15] | Grazia Leonzio. Mathematical model of absorption and hybrid heat pump[J]. , 2017, 25(10): 1492-1504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||