[1] Y.E. Yuksel, M. Ozturk, I. Dincer, Analysis and assessment of a novel hydrogen liquefaction process, Int. J. Hydrog. Energy 42 (16) (2017) 11429–11438 [2] M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems, Int. J. Hydrog. Energy 33 (15) (2008) 4013–4029 [3] M. Al-Zareer, I. Dincer, M.A. Rosen, Multi-objective optimization of an integrated gasification combined cycle for hydrogen and electricity production, Comput. Chem. Eng. 117 (2018) 256–267 [4] D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL,USA, 2004 [5] D.O. Berstad, J.H. Stang, P. Nekså, Comparison criteria for large-scale hydrogen liquefaction processes, Int. J. Hydrog. Energy 34 (3) (2009) 1560–1568 [6] Y.H. Hu, L. Zhang, Hydrogen storage in metal-organic frameworks, Adv. Mater. 22 (20) (2010) E117–E130 [7] C. Yilmaz, A case study: Exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle, Renew. Energy 128 (2018) 68–80 [8] R.C. Mulready, Liquid hydrogen engines. Technology and Uses of Liquid Hydrogen. Amsterdam: Elsevier, (1964) 149–180 [9] W.A. Amos, Costs of storing and transporting hydrogen, National Renewable Energy Laboratory Golden, CO, USA, 1998 [10] F. Papanelopoulou, Louis Paul Cailletet: The liquefaction of oxygen and the emergence of low-temperature research, Notes Rec. R. Soc. 67 (4) (2013) 355–373 [11] T.K. Nandi, S. Sarangi, Performance and optimization of hydrogen liquefaction cycles, Int. J. Hydrog. Energy 18 (2) (1993) 131–139 [12] S. Krasae-in, J.H. Stang, P. Neksa, Development of large-scale hydrogen liquefaction processes from 1898 to 2009, Int. J. Hydrogen Energy, 35(10) (2010) 4524-4533 [13] G. McIntosh, Hydrogen liquefiers since 1950, Advances in Cryogenic Engeineering: Transactions of the Cryogenic Engineering Conference-CEC, AIP Publishing, (2004) 9-15. [14] E. Almqvist, History of industrial gases, Springer Science & Business Media, 2003 [15] C. Baker, A study of the efficiency of hydrogen liquefaction, Int. J. Hydrog. Energy 3 (3) (1978) 321–334 [16] H. Matsuda, M. Nagami, Study of large hydrogen liquefaction process, Korea Hydrogen & Energy Research Institute, Nippon Sanso Corp WE-NET: Summary of annual reports, 8(3) (1997) 175-175 [17] Quack H., Conceptual design of a high efficiency large capacity hydrogen liquefier, AIP Conference Proceedings. Madison, Wisconsin (USA), AIP (2002) 255–263 [18] V.V. Belyakov, B.D. Krakovskii, O.M. Popov, G.K. Step, V.N. Udut, Low-capacity hydrogen liquefier with a helium cycle, Chem. Petroleum Eng. 38 (3–4) (2002) 150–153 [19] A. Kuendig, K. Loehlein, G. Kramer, J. Huijsmans, Large scale hydrogen liquefaction in combination with LNG regasification, In: Proceedings of the 16th World Hydrogen Energy Conference, Lyon, France (2006) 3326–3333. [20] M. Shimko, M. Gardiner, Innovative hydrogen liquefaction cycle, In: Annual Progress Report DOE Hydrogen Program, (2007) 294-297. [21] Staats W.L., Analysis of a supercritical hydrogen liquefaction cycle, Ph.D. Thesis, Massachusetts Institute of Technology, Massachusetts, USA (2008). [22] G. Valenti, E. Macchi, Proposal of an innovative, high-efficiency, large-scale hydrogen liquefier, Int. J. Hydrog. Energy 33 (12) (2008) 3116–3121 [23] S. Krasae-In, J.H. Stang, P. Neksa, Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system, Int. J. Hydrog. Energy 35 (22) (2010) 12531–12544 [24] H. Ozcan, I. Dincer, Thermodynamic modeling of a nuclear energy based integrated system for hydrogen production and liquefaction, Comput. Chem. Eng. 90 (2016) 234–246 [25] M. Asadnia, M. Mehrpooya, A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems, Int. J. Hydrog. Energy 42 (23) (2017) 15564–15585 [26] U. Cardella, L. Decker, J. Sundberg, H. Klein, Process optimization for large-scale hydrogen liquefaction, Int. J. Hydrog. Energy 42 (17) (2017) 12339–12354 [27] M.S. Sadaghiani, M. Mehrpooya, Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration, Int. J. Hydrog. Energy 42 (9) (2017) 6033–6050 [28] M. Aasadnia, M. Mehrpooya, Large-scale liquid hydrogen production methods and approaches: A review, Appl. Energy 212 (2018) 57–83 [29] H. Ansarinasab, M. Mehrpooya, M. Sadeghzadeh, An exergy-based investigation on hydrogen liquefaction plant-exergy, exergoeconomic, and exergoenvironmental analyses, J. Clean. Prod. 210 (2019) 530–541 [30] M. Aasadnia, M. Mehrpooya, Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system, J. Clean. Prod. 205 (2018) 565–588 [31] B. Ghorbani, M. Mehrpooya, M. Aasadnia, M.S. Niasar, Hydrogen liquefaction process using solar energy and organic Rankine cycle power system, J. Clean. Prod. 235 (2019) 1465–1482 [32] M. Aasadnia, M. Mehrpooya, H. Ansarinasab, A 3E evaluation on the interaction between environmental impacts and costs in a hydrogen liquefier combined with absorption refrigeration systems, Appl. Therm. Eng. 159 (2019) 113798 [33] Ö. Kaşka, C. Yılmaz, O. Bor, N. Tokgöz, The performance assessment of a combined organic Rankine-vapor compression refrigeration cycle aided hydrogen liquefaction, Int. J. Hydrog. Energy 43 (44) (2018) 20192–20202 [34] C. Yilmaz, O. Kaska, Performance analysis and optimization of a hydrogen liquefaction system assisted by geothermal absorption precooling refrigeration cycle, Int. J. Hydrog. Energy 43 (44) (2018) 20203–20213 [35] T. Parikhani, T. Gholizadeh, H. Ghaebi, S.M. Sattari Sadat, M. Sarabi, Exergoeconomic optimization of a novel multigeneration system driven by geothermal heat source and liquefied natural gas cold energy recovery, J. Clean. Prod. 209 (2019) 550–571 [36] M. Kanoglu, I. Dincer, M.A. Rosen, Geothermal energy use in hydrogen liquefaction, Int. J. Hydrog. Energy 32 (17) (2007) 4250–4257 [37] M. Kanoglu, C. Yilmaz, A. Abusoglu, Geothermal energy use in absorption precooling for Claude hydrogen liquefaction cycle, Int. J. Hydrog. Energy 41 (26) (2016) 11185–11200 [38] Y.E. Yuksel, M. Ozturk, I. Dincer, Analysis and performance assessment of a combined geothermal power-based hydrogen production and liquefaction system, Int. J. Hydrog. Energy 43 (22) (2018) 10268–10280 [39] C. Yilmaz, Optimum energy evaluation and life cycle cost assessment of a hydrogen liquefaction system assisted by geothermal energy, Int. J. Hydrog. Energy 45 (5) (2020) 3558–3568 [40] Tavanir, Specialized Mother Company, Iranian J. Power Industry, Deputy of Research and Human Resources, 2016. (In Persian) [41] M. Abadpour, H. Hamidi, Stabilization of V94.2 gas turbine using intelligent fuzzy controller optimized by the genetic algorithm, Int. J. Applied and Computational Mathematics, 3(4) (2017) 2929-2942 [42] B. Kowalczyk, C. Kowalczyk, R.M. Rolf, K. Badyda, Model of an ANSALDO V94.2 gas turbine from Lublin Wrotków Combined Heat and Power Plant using GateCycleTM software, J. Power Technologies, 94(3) (2014) 190-195 [43] M. Tahani, M. Masdari, M. Salehi, N. Ahmadi, Optimization of wet compression effect on the performance of V94.2 gas turbine, Appl. Therm. Eng. 143 (2018) 955–963 [44] J. Sigler, D. Erickson, H. Perez-Blanco, Gas turbine inlet air cooling using absorption refrigeration: A comparison based on a combined cycle process, ASME Turbo Expo 2001: Power for Land, Sea, and Air, American Society of Mechanical Engineers, (2001) V003T003A010 - V003T003A010. [45] S. Takezawa, K. Wakahara, T. Araki, K. Onda, S. Nagata, Cycle analysis using exhaust heat of SOFC and turbine combined cycle by absorption chiller, Elect. Eng. Jpn. 167 (1) (2009) 49–55 [46] P. Ahmadi, N. Enadi, H.B. Avval, I. Dincer, Modelling and exergoeconomic optimisation of a gas turbine with absorption chiller using evolutionary algorithm, Int. J. Exergy 11 (1) (2012) 1 [47] M. Kamalinejad, M. Amidpour, S.M.M. Naeynian, Thermodynamic design of a cascade refrigeration system of liquefied natural gas by applying mixed integer non-linear programming, Chin. J. Chem. Eng. 23 (6) (2015) 998–1008 [48] M. Bracha, G. Lorenz, A. Patzelt, M. Wanner, Large-scale hydrogen liquefaction in Germany, Int. J. Hydrog. Energy 19 (1) (1994) 53–59 [49] S. Krasae-in, Efficient Hydrogen Liquefaction Processes, Ph. D. Thesis, Norwegian University of Science and Technology, Norway, 2013 [50] C. Yilmaz, M. Kanoglu, Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis, Energy 69 (2014) 592–602 [51] T. Alumona, Overview of Losses and Solutions in Power Transmission Lines, Network and Complex System, 8(4) (2014) 45-49 [52] H. Ansarinasab, M. Mehrpooya, A. Mohammadi, Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system, J. Clean. Prod. 144 (2017) 248–259 [53] R.J. Thomas, P. Ghosh, K. Chowdhury, Exergy based analysis on different expander arrangements in helium liquefiers, Int. J. Refrig. 35 (4) (2012) 1188–1199 [54] T.B. He, Y.L. Ju, A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages, Energy 75 (2014) 349–359 [55] R. Dutta, R. Thomas, P. Ghosh, K. Chowdhury, Dynamic simulation of large-scale helium liquefier using aspen Hysys® 23rd National Symposium on Cryogenics, Rourkela, India, 2010, 28-30 [56] R. Dutta, P. Ghosh, K. Chowdhury, Customization and validation of a commercial process simulator for dynamic simulation of Helium liquefier, Energy 36 (5) (2011) 3204–3214 [57] R.T. Jacobsen, R.B. Stewart, Thermodynamic properties of nitrogen including liquid and vapor phases from 63K to 2000K with pressures to 10,000 bar, J. Physical and Chemical Reference Data, 2(4) (1973) 757-922 [58] B.A. Younglove, Erratum: Thermophysical properties of fluids. I. argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen, J. Phys. Chem. Ref. Data 14 (2) (1985) 619 [59] J.S. Lopez-Echeverry, S. Reif-Acherman, E. Araujo-Lopez, Peng-Robinson equation of state: 40 years through cubics, Fluid Phase Equilibria 447 (2017) 39–71 [60] M.S. Sadaghiani, M. Mehrpooya, H. Ansarinasab, Process development and exergy cost sensitivity analysis of a novel hydrogen liquefaction process, Int. J. Hydrog. Energy 42 (50) (2017) 29797–29819 [61] G.J. Kramera, J. Huijsmansb, D. Austgenc, Clean and green hydrogen, Proceedings of the 16th World Hydrogen Energy Conference, Lyon, France. (2006) 13–16. [62] R.F. Barron, Cryogenic systems, Oxford University Press, Oxford,1985 [63] D.O. Berstad, J.H. Stang, P. Nekså, Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling, Int. J. Hydrog. Energy 35 (10) (2010) 4512–4523 [64] A. Moradi, M. Mafi, M. Khanaki, Sensitivity analysis of peak-shaving natural gas liquefaction cycles to environmental and operational parameters, Modares Mechanical Engineering, 15(6) (2015) 287-298 [65] T. Giampaolo, Compressor handbook: Principles and practice, CRC Press, Boca Raton, FL,USA,2020 [66] Girdhar P., Moniz O., MacKay S., Forces in centrifugal pumps. Practical Centrifugal Pumps, Elsevier, Amsterdam, 2005, pp. 76–88 [67] S. Yahya, Turbines compressors and fans, Tata McGraw-Hill Education, 1987 [68] M. Picón-Núñez, G.T. Polley, M. Medina-Flores, Thermal design of multi-stream heat exchangers, Appl. Therm. Eng. 22 (14) (2002) 1643–1660 [69] M. Mehrpooya, M. Hossieni, A. Vatani, Novel LNG-based integrated process configuration alternatives for coproduction of LNG and NGL, Ind. Eng. Chem. Res. 53 (45) (2014) 17705–17721 [70] S.S. Chadwick, Ullmann's encyclopedia of industrial chemistry, Ref. Serv. Rev. 16 (4) (1988) 31–34 [71] G.E. Schmauch, A.H. Singleton, Technical aspects of ortho-parahydrogen conversion, Ind. Eng. Chem. 56 (5) (1964) 20–31 [72] S. A. Sherif, D. Y. Goswami, E. L Stefanakos, A. Steinfeld, Handbook of hydrogen energy, CRC Press, Boca Raton, FL,USA,2014 [73] M. Kutz, Mechanical engineers' handbook[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005 [74] N.A. Darwish, S.H. Al-Hashimi, A.S. Al-Mansoori, Performance analysis and evaluation of a commercial absorption-refrigeration water-ammonia (ARWA) system, Int. J. Refrig. 31 (7) (2008) 1214–1223 [75] Jacobsen R.T., Penoncello S.G., Lemmon E.W., Thermodynamic properties of cryogenic fluids, Thermodynamic Properties of Cryogenic Fluids, Springer US, Boston, MA, 1997, pp. 31–287 |