[1] M. Anheden, A. Andersson, C. Bernstone, S. Eriksson, J. Yan, S. Liljemark, C. Wall, CO2 quality requirement for a system with CO2 capture, transport and storage, Greenhouse Gas Control Technologies 7, Elsevier2005, pp. 2559-2564 [2] L. Shan, H. Li, B. Meng, Y. Yu, Y. Min, Improvement of CO2 capture performance of calcium-based absorbent modified with palygorskite, Chinese Journal of Chemical Engineering 24 (2016) 1283-1289 [3] Forbes S.M., Verma P., Curry T.E., Friedmann S.J., Wade S.M., Guidelines for Carbon Dioxide Capture, Transport and Storage, World Reseurces Institute, Washington DC, USA, 2008 [4] Anantharaman R., Bolland O., Booth N., Van Dorst E., Ekstrom C., Sanchez Fernandes E., Franco F., Macchi E., Manzolini G., Nikolic D., European best practice guidelines for assessment of CO2 capture technologies, CAESAR Project FP7—ENERGY (2007) 1 [5] Stream D.-C., Implementation of Directive 2009/31/EC n the Geological Storage of Carbon Dioxide, Guidance Document (2011) [6] Z. Abbas, T. Mezher, M.R. Abu-Zahra, CO2 purification. Part I: Purification requirement review and the selection of impurities deep removal technologies, International journal of greenhouse gas control 16 (2013) 324-334 [7] M. Netusil, P. Ditl, Comparison of three methods for natural gas dehydration, Journal of natural gas chemistry 20 (2011) 471-476 [8] M. Netušil, P. Ditl, Natural Gas Dehydration, INTECH Open Access Publisher2012 [9] X. Huang, Z. Li, Y. Tian, Process optimization of an industrial acetic acid dehydration progress via heterogeneous azeotropic distillation, Chinese journal of chemical engineering 26 (2018) 1631-1643 [10] M. Salman, L. Zhang, J. Chen, A Computational Simulation Study for Techno-Economic Comparison of Conventional and Stripping Gas Methods for Natural Gas Dehydration, Chinese Journal of Chemical Engineering (2020) [11] M. Stewart, K. Arnold, Gas dehydration field manual, Gulf Professional Publishing2011 [12] M. Huffmaster, Gas dehydration fundamentals, Proceedings of the Laurance Reid Gas Conditioning Conference, University of Oklahoma OUTREACH, 2004 [13] S.A. Fazel, A. Safekordi, M. Jamialahmadi, Pool boiling heat transfer in dilute water/triethyleneglycol solutions, Chinese Journal of Chemical Engineering 17 (2009) 552-561 [14] Grosso S., Glycol Choice for GAS Dehydration Merits Close Study, Oil and Gas J 76 (7) (1978) 106–110 [15] P. Gandhidasan, Parametric analysis of natural gas dehydration by a triethylene glycol solution, Energy Sources 25 (2003) 189-201 [16] V. Piemonte, M. Maschietti, F. Gironi, A Triethylene Glycol–Water System: A study of the TEG regeneration processes in natural gas dehydration plants, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (2012) 456-464 [17] A. Bahadori, H.B. Vuthaluru, Rapid estimation of equilibrium water dew point of natural gas in TEG dehydration systems, Journal of Natural Gas Science and Engineering 1 (2009) 68-71 [18] A. Bahadori, H.B. Vuthaluru, Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems, Energy 34 (2009) 1910-1916 [19] N.A. Darwish, N. Hilal, Sensitivity analysis and faults diagnosis using artificial neural networks in natural gas TEG-dehydration plants, Chemical Engineering Journal 137 (2008) 189-197 [20] E.W. Grynia, J.J. Carroll, P.J. Griffin, Dehydration of Acid Gas Prior to Injection, Acid Gas Injection and Related Technologies (2010) 107-127 [21] L.E. Øi, M. Fazlagic, Glycol dehydration of captured carbon dioxide using Aspen Hysys simulation, Proceedings of the 55th Conference on Simulation and Modelling (SIMS 55), Modelling, Simulation and Optimization, 21-22 October 2014, Aalborg, Denmark, Linköping University Electronic Press, (2014), 167-174 [22] S. Kumar, O. Zarzour, G. King, Design of CO2 dehydration and compression facilities, Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Engineers, 2010 [23] P.S. Roy, M.R. Amin, Aspen-HYSYS simulation of natural gas processing plant, Journal of Chemical Engineering 26 (2012) 62-65 [24] M. Bahmani, J. Shariati, A.N. Rouzbahani, Simulation and optimization of an industrial gas condensate stabilization unit to modify LPG and NGL production with minimizing CO2 emission to the environment, Chinese Journal of Chemical Engineering 25 (2017) 338-346 [25] B. Guo, A. Ghalambor, Natural gas engineering handbook, Elsevier2014 [26] M.A. Zamarripa, J.C. Eslick, M.S. Matuszewski, D.C. Miller, Multi-objective Optimization of Membrane-based CO2 Capture, Computer Aided Chemical Engineering, Elsevier2018, pp. 1117-1122 [27] M. Abu-Zahra, A. Sodiq, P. Feron, Commercial liquid absorbent-based PCC processes, Absorption-Based Post-combustion Capture of Carbon Dioxide, Elsevier2016, pp. 757-778 [28] T. Sanpasertparnich, R. Idem, I. Bolea, D. deMontigny, P. Tontiwachwuthikul, Integration of post-combustion capture and storage into a pulverized coal-fired power plant, International Journal of Greenhouse Gas Control 4 (2010) 499-510 [29] C. Group, Inc., Triethylene Glycol-Kinematic Viscosity Data, 2012. |