[1] M. Ilbert, V. Bonnefoy, Insight into the evolution of the iron oxidation pathways, BBA. Bioenergetics 1827(2013) 161-175. [2] F. Rezvani, F. Ardestani, G. Najafpour, Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture, Braz. J. Microbiol. 48(2017) 251-258. [3] E. Kot, S. Furmanov, A. Bezkorovainy, Hydrogen peroxide production and oxidation of ferrous iron by Lactobacillus delbrueckii ssp. bulgaricus, J. Dairy Sci. 79(1996) 758-766. [4] A. Brink, C. Sheridan, K. Harding, Combined biological and advance oxidation processes for paper and pulp effluent treatment, South African Journal of Chemical Engineering 25(2018) 116-122. [5] P. González-Contreras, J. Weijma, C.J.N. Buisman, Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal, Water Res. 46(2012) 5883-5892. [6] N. Okibe, M. Koga, S. Morishita, et al., Microbial formation of crystalline scorodite for treatment of As (III)-bearing copper refinery process solution using Acidianus brierleyi, Hydrometallurgy 143(2014) 34-41. [7] A.R. Neves, A. Ramos, H. Costa, et al., Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis:kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance, Appl. Environ. Microbiol. 68(2002) 6332-6342. [8] C. Marty-Teysset, F. de la Torre, J.R. Garel, Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration:involvement of an NADH oxidase in oxidative stress, Appl. Environ. Microbiol. 66(2000) 262-267. [9] M.N. Gatti, R.H. Milocco, A. Giaveno, Modeling the bacterial oxidation of ferrous iron with Acidithiobacillus ferrooxidans using kriging interpolation, Hydrometallurgy 71(2003) 89-96. [10] Y. Ma, C. Lin, Microbial oxidation of Fe2+ and pyrite exposed to flux of micromolar H2O2 in acidic media, Sci. Rep. 3(2013) 1-10. [11] J. Vanlier, C.A. Tiemann, P.A.J. Hilbers, et al., Parameter uncertainty in biochemical models described by ordinary differential equations, Math. Biosci. 246(2013) 305-314. [12] B. Teusink, J. Passarge, C. Reijenga, et al., Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry, Eur. J. Biochem. 267(2000) 5313. [13] C.A. Tiemann, J. Vanlier, P.A.J. Hilbers, et al., Parameter adaptations during phenotype transitions in progressive diseases, BMC Syst. Biol. 5(2011) 174. [14] N.A.W. van Riel, Dynamic modelling and analysis of biochemical networks:Mechanism-based models and model-based experiments, Brief. Bioinform. 7(2006) 364-374. [15] T. Ma, S. Wang, Bifurcation Theory and Applications, World Scientific, Singapore, 2005. [16] W. Fu, A.P. Mathews, Lactic acid production from lactose by Lactobacillus plantarum:kinetic model and effects of pH, substrate, and oxygen, Biochem. Eng. J. 3(1999) 163-170. [17] W. Klöckner, J. Büchs, Advances in shaking technologies, Trends Biotechnol. 30(2012) 307-314. [18] P.F. Biard, A. Couvert, Overview of mass transfer enhancement factor determination for acidic and basic compounds absorption in water, Chem. Eng. J. 222(2013) 444-453. [19] H. Yagi, F. Yoshida, Enhancement factor for oxygen absorption into fermentation broth, Biotechnol. Bioeng. 17(1975) 1083-1098. [20] C. Castelle, M. Guiral, G. Malarte, et al., A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans, J. Biol. Chem. 283(2008) 25803-25811. [21] A. Yarzabal, G. Brasseur, J. Ratouchniak, et al., The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein, J. Bacteriol. 184(2002) 313-317. [22] C.K. Duesterberg, S.E. Mylon, T.D. Waite, pH effects on iron-catalyzed oxidation using Fenton's reagent, Environ. Sci. Technol. 42(2008) 8522-8527. [23] F.J. Millero, S. Sotolongo, M. Izaguirre, The oxidation kinetics of Fe(II) in seawater, Geochim. Cosmochim. Acta 51(1987) 793-801. [24] D.J. Kim, D. Pradhan, K.H. Park, et al., Effect of pH and temperature on Iron oxidation by mesophilic mixed Iron oxidizing microflora, Mater. Trans. 49(2008) 2389-2393. [25] A.M. Croicu, A.M. Jarrett, N.G. Cogan, et al., Short-term antiretroviral treatment recommendations based on sensitivity analysis of a mathematical model for HIV infection of CD4+ T cells, Bull. Math. Biol. 79(2017) 2649-2671. [26] C.P.P. Arceo, E.C. Jose, A. Marin-Sanguino, et al., Chemical reaction network approaches to biochemical systems theory, Math. Biosci. 269(2015) 135-152. [27] S.J. Hug, O. Leupin, Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the Fenton reaction, Environ. Sci. Technol. 37(2003) 2734-2742. [28] Z. Wang, J. Liu, New insight into photochemical oxidation of Fe(II):The roles of Fe (III) and reactive oxygen species, Catal. Today 224(2014) 244-250. [29] N. Okibe, M. Koga, K. Sasaki, et al., Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi, Miner. Eng. 48(2013) 126-134. [30] P. González-Contreras, J. Weijma, C.J.N. Buisman, Kinetics of ferrous iron oxidation by batch and continuous cultures of thermoacidophilic Archaea at extremely low pH of 1.1-1.3, Appl. Microbiol. Biotechnol. 93(2012) 1295-1303. [31] T.H. Kwan, A. Vlysidis, Z. Wu, et al., Lactic acid fermentation modelling of Streptococcus thermophilus YI-B1 and Lactobacillus casei Shirota using food waste derived media, Biochem. Eng. J. 127(2017) 97-109. [32] K.G. Kanurić, S.D. Milanović, B.B. Ikonić, et al., Kinetics of lactose fermentation in milk with kombucha starter, J. Food Drug Anal. 26(2018) 1229-1234. [33] A. Cinar, S.J. Parulekar, C. Undey, et al., Batch fermentation:Modeling, monitoring, and control, Marcel Dekker, New York, 2003. [34] Y. Zhang, M.A. Henson, Bifurcation analysis of continuous biochemical reactor models, Biotechnol. Prog. 17(2001) 647-660. |