[1] I. Amghizar, L.A. Vandewalle, K.M. Van Geem, G.B. Marin, New trends in olefin production, Engineering 3(2017) 171-178. [2] A. Corma, E. Corresa, Y. Mathieu, L. Sauvanaud, S. Al-Bogami, M.S. Al-Ghrami, A. Bourane, Crude oil to chemicals:Light olefins from crude oil, Catal. Sci. Technol. 7(2017) 12-46. [3] S.M. Sadrameli, Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins:Astate-of-the-art review II:Catalytic cracking review, Fuel 173(2016) 285-297. [4] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins:A review, Appl. Catal. A 398(2011) 1-17. [5] S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins:Astate-of-the-art review I:Thermal cracking review, Fuel 140(2015) 102-115. [6] A. Corma, L. Sauvanaud, Y. Mathieu, S. Al-Bogami, A. Bourane, M. Al-Ghrami, Direct crude oil cracking for producing chemicals:Thermal cracking modeling, Fuel 211(2018) 726-736. [7] F.M. Alotaibi, S. González-Cortés, M.F. Alotibi, T. Xiao, H. Al-Megren, G. Yang, P.P. Edwards, Enhancing the production of light olefins from heavy crude oils:Turning challenges into opportunities, Catal. Today 317(2018) 86-98. [8] Y. Che, M. Yuan, Y. Qiao, Q. Liu, J. Zhang, Y. Tian, Fundamental study of hierarchical millisecond gas-phase catalytic cracking process for enhancing the production of light olefins from vacuum residue, Fuel 237(2019) 1-9. [9] M.A. Bari Siddiqui, A.M. Aitani, M.R. Saeed, S. Al-Khattaf, Enhancing the production of light olefins by catalytic cracking of FCC naphtha over mesoporous ZSM-5 catalyst, Top. Catal. 53(2010) 1387-1393. [10] S. Al-Khattaf, M.R. Saeed, A. Aitani, M.T. Klein, Catalytic cracking of light crude oil to light olefins and naphtha over E-Cat and MFI:Microactivity test versus advanced cracking evaluation and the effect of high reaction temperature, Energy Fuel 32(2018) 6189-6199. [11] A. Kossiakoff, F.O. Rice, Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals, J. Am. Chem. Soc. 65(1943) 590-595. [12] F.O. Rice, K.F. Herzfeld, Thermal decomposition of organic compounds from the standpoint of free radicals. VI. The mechanism of some chain reactions, J. Am. Chem. Soc. 56(1934) 284-289. [13] W.O. Haag, R.M. Dessau, Duality of mechanism for acid-catalyzed paraffin cracking, Proceedings of the 8th International Congress on Catalysis, Dechema, Berlin, 2, 1984, pp. 305-316. [14] X. Meng, C. Xu, J. Gao, L. Li, Studies on catalytic pyrolysis of heavy oils:Reaction behaviors and mechanistic pathways, Appl. Catal. A 294(2005) 168-176. [15] X. Meng, C. Xu, L. Li, J. Gao, Cracking performance of gasoline and diesel fractions from catalytic pyrolysis of heavy gas oil derived from Canadian synthetic crude oil, Energy Fuel 25(2011) 3382-3388. [16] R. Zhang, Z. Wang, H. Liu, Z. Liu, G. Liu, X. Meng, Thermodynamic equilibrium distribution of light olefins in catalytic pyrolysis, Appl. Catal. A 522(2016) 165-171. [17] G.F. Froment, On fundamental kinetic equations for chemical reactions and processes, Curr. Opin. Chem. Eng. 5(2014) 1-6. [18] G.F. Froment, Single event kinetic modeling of complex catalytic processes, Catal. Rev. 47(2005) 83-124. [19] W. Feng, E. Vynckier, G.F. Froment, Single event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32(1993) 2997-3005. [20] N.V. Dewachtere, F. Santaella, G.F. Froment, Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54(1999) 3653-3660. [21] G.G. Martens, G.B. Marin, J.A. Martens, P.A. Jacobs, G.V. Baron, A fundamental kinetic model for hydrocracking of C8 to C12 alkanes on Pt/US-Y zeolites, J. Catal. 195(2000) 253-267. [22] J.W. Thybaut, G.B. Marin, G.V. Baron, P.A. Jacobs, J.A. Martens, Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H-(US)Y-zeolite, J. Catal. 202(2001) 324-339. [23] R. Quintana-Solórzano, J.W. Thybaut, G.B. Marin, R. Lødeng, A. Holmen, Single-event microkinetics for coke formation in catalytic cracking, Catal. Today 107-108(2005) 619-629. [24] H.C. Beirnaert, J.R. Alleman, G.B. Marin, A fundamental kinetic model for the catalytic cracking of alkanes on a USY zeolite in the presence of coke formation, Ind. Eng. Chem. Res. 40(2001) 1337-1347. [25] R. Quintana-Solórzano, J.W. Thybaut, G.B. Marin, A single-event microkinetic analysis of the catalytic cracking of (cyclo)alkanes on an equilibrium catalyst in the absence of coke formation, Chem. Eng. Sci. 62(2007) 5033-5038. [26] R. Van Borm, M.-F. Reyniers, G.B. Marin, Catalytic cracking of alkanes on FAU:Singleevent microkinetic modeling including acidity descriptors, AIChE J 58(2012) 2202-2215. [27] J.W. Thybaut, G.B. Marin, Single-event MicroKinetics:Catalyst design for complex reaction networks, J. Catal. 308(2013) 352-362. [28] T. von Aretin, S. Schallmoser, S. Standl, M. Tonigold, J.A. Lercher, O. Hinrichsen, Single-event kinetic model for 1-pentene cracking on ZSM-5, Ind. Eng. Chem. Res. 54(2015) 11792-11803. [29] S. Standl, M. Tonigold, O. Hinrichsen, Single-event kinetic modeling of olefins cracking on ZSM-5:Proof of feed independence, Ind. Eng. Chem. Res. 56(2017) 13096-13108. [30] T. von Aretin, S. Standl, M. Tonigold, O. Hinrichsen, Optimization of the product spectrum for 1-pentene cracking on ZSM-5 using single-event methodology. Part 1:Two-zone reactor, Chem. Eng. J. 309(2017) 886-897. [31] T. von Aretin, S. Standl, M. Tonigold, O. Hinrichsen, Optimization of the product spectrum for 1-pentene cracking on ZSM-5 using single-event methodology. Part 2:Recycle reactor, Chem. Eng. J. 309(2017) 873-885. [32] J. Sundberg, S. Standl, T. von Aretin, M. Tonigold, S. Rehfeldt, O. Hinrichsen, H. Klein, Optimal process for catalytic cracking of higher olefins on ZSM-5, Chem. Eng. J. 348(2018) 84-94. [33] G. Roohollahi, M. Kazemeini, A. Mohammadrezaee, R. Golhosseini, Chemical kinetic modeling of i-butane and n-butane catalytic cracking reactions over HZSM-5 zeolite, AIChE J 58(2012) 2456-2465. [34] Y. Liu, X. Chen, H. Zhao, C. Yang, Establishment of kinetic model for catalytic pyrolysis of Daqing atmospheric residue, Chin. J. Chem. Eng. 17(2009) 78-82. [35] M. Sedighi, K. Keyvanloo, J. Towfighi, Kinetic study of steam catalytic cracking of naphtha on a Fe/ZSM-5 catalyst, Fuel 109(2013) 432-438. [36] A. Afshar Ebrahimi, H. Mousavi, H. Bayesteh, J. Towfighi, Nine-lumped kinetic model for VGO catalytic cracking:Using catalyst deactivation, Fuel 231(2018) 118-125. [37] X. Meng, C. Xu, L. Li, J. Gao, Kinetics of catalytic pyrolysis of heavy gas oil derived from Canadian synthetic crude oil, Energy Fuel 25(2011) 3400-3407. [38] X. Meng, C. Xu, L. Li, J. Gao, Kinetic study of catalytic pyrolysis of C4 hydrocarbons on a modified ZSM-5 zeolite catalyst, Energy Fuel 24(2010) 6233-6238. [39] X. Meng, C. Xu, L. Li, J. Gao, Studies on the kinetics of heavy oil catalytic pyrolysis, Ind. Eng. Chem. Res. 42(2003) 6012-6019. [40] X. Meng, C. Xu, J. Gao, L. Li, Seven-lump kinetic model for catalytic pyrolysis of heavy oil, Catal. Commun. 8(2007) 1197-1201. [41] J. Li, T. Li, H. Ma, Q. Sun, C. Li, W. Ying, D. Fang, Kinetics of coupling cracking of butene and pentene on modified HZSM-5 catalyst, Chem. Eng. J. 346(2018) 397-405. [42] D.V. Naik, V. Karthik, V. Kumar, B. Prasad, M.O. Garg, Kinetic modeling for catalytic cracking of pyrolysis oils with VGO in a FCC unit, Chem. Eng. Sci. 170(2017) 790-798. [43] D. Mier, A.T. Aguayo, M. Gamero, A.G. Gayubo, J. Bilbao, Kinetic modeling of nbutane cracking on HZSM-5 zeolite catalyst, Ind. Eng. Chem. Res. 49(2010) 8415-8423. [44] E. Epelde, A.T. Aguayo, M. Olazar, J. Bilbao, A.G. Gayubo, Kinetic model for the transformation of 1-butene on a K-modifiedHZSM-5 catalyst, Ind. Eng. Chem. Res. 53(2014) 10599-10607. [45] T. Cordero-Lanzac, A.T. Aguayo, A.G. Gayubo, P. Castaño, J. Bilbao, Simultaneous modeling of the kinetics for n-pentane cracking and the deactivation of a HZSM-5 based catalyst, Chem. Eng. J. 331(2018) 818-830. [46] K. Xiong, C. Lu, Z. Wang, X. Gao, Quantitative correlations of cracking performance with physiochemical properties of FCC catalysts by a novel lump kinetic modelling method, Fuel 161(2015) 113-119. [47] P. Nageswara Rao, D. Kunzru, Thermal cracking of JP-10:Kinetics and product distribution, J. Anal. Appl. Pyrol. 76(2006) 154-160. [48] T. Ward, J.S. Ervin, R.C. Striebich, S. Zabarnick, Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions, J. Propuls. Power 20(2004) 394-402. [49] T.A. Ward, J.S. Ervin, S. Zabarnick, L. Shafer, Pressure effects on flowing mildlycracked n-decane, J. Propuls. Power 21(2005) 344-355. [50] Y. Zhu, B. Liu, P. Jiang, Experimental and numerical investigations on n-decane thermal cracking at supercritical pressures in a vertical tube, Energy Fuel 28(2014) 466-474. [51] D. Zhang, L. Hou, M. Gao, X. Zhang, Experiment and modeling on thermal cracking of n-dodecane at supercritical pressure, Energy Fuel 32(2018) 12426-12434. [52] M. Mesbah, E. Soroush, M. Rezakazemi, Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature, Chin. J. Chem. Eng. 25(2017) 1238-1248. [53] K. Bi, T. Qiu, An intelligent SVM modeling process for crude oil properties prediction based on a hybrid GA-PSO method, Chin. J. Chem. Eng. 27(2019) 1888-1894. [54] M. Li, W. Wu, B. Chen, Y. Wu, X. Huang, Solubility prediction of gases in polymers based on an artificial neural network:a review, RSC Adv. 7(2017) 35274-35282. [55] B. Vaferi, M. Karimi, M. Azizi, H. Esmaeili, Comparison between the artificial neural network, SAFT and PRSV approach in obtaining the solubility of solid aromatic compounds in supercritical carbon dioxide, J. Supercrit. Fluid. 77(2013) 44-51. [56] A. KhazaiePoul, M. Soleimani, S. Salahi, Solubility prediction of disperse dyes in supercritical carbon dioxide and ethanol as co-solvent using neural network, Chin. J. Chem. Eng. 24(2016) 491-498. [57] M. Karimi, B. Vaferi, S.H. Hosseini, M. Rasteh, Designing an efficient artificial intelligent approach for estimation of hydrodynamic characteristics of tapered fluidized bed from its design and operating parameters, Ind. Eng. Chem. Res. 57(2018) 259-267. [58] F. Hua, Z. Fang, T. Qiu, Application of convolutional neural networks to largescale naphtha pyrolysis kinetic modeling, Chin. J. Chem. Eng. 26(2018) 2562-2572. [59] Z. Chen, W. Ma, K. Wei, J. Wu, S. Li, K. Xie, G. Lv, Artificial neural network modeling for evaluating the power consumption of silicon production in submerged arc furnaces, Appl. Therm. Eng. 112(2017) 226-236. [60] M. Hassanpour, B. Vaferi, M.E. Masoumi, Estimation of pool boiling heat transfer coefficient of alumina water-based nanofluids by various artificial intelligence (AI) approaches, Appl. Therm. Eng. 128(2018) 1208-1222. [61] X. Hou, N. Ni, Y. Wang, W. Zhu, Y. Qiu, Z. Diao, G. Liu, X. Zhang, Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins, J. Anal. Appl. Pyrol. 138(2019) 270-280. [62] X. Xian, G. Liu, X. Zhang, L. Wang, Z. Mi, Cataltic cracking of n-dodecane over HZSM-5 zeolite under supercritical conditions:experiments and kinetics, Chem. Eng. Sci. 65(2010) 5588-5604. |