[1] V. Martin-Gil, M.Z. Ahmad, R. Castro-Muñoz, V. Fila, Economic framework of membrane technologies for natural gas applications, Sep. Purif. Rev. (2018) 1-27. [2] W.J. Koros, Membrane technology in the chemical industry, J. Membr. Sci. 194(2001) 277. [3] I. Salahshoori, A. Hatami, A. Seyfaee, Investigation of experimental results and D-optimal design of hafnium ion extraction from aqueous system using emulsion liquid membrane technique, J. Iran. Chem. Soc. (2020) https://doi.org/10.1007/s13738-020-02007-9. [4] I. Salahshoori, D. Nasirian, N. Rashidi, M.K. Hossain, A. Hatami, M. Hassanzadeganroudsari, The effect of silica nanoparticles on polysulfone-polyethylene glycol (PSF/PEG) composite membrane on gas separation and rheological properties of nanocomposites, Polym. Bull. (2020) https://doi.org/10.1007/s00289-020-03255-8. [5] D. Nasirian, I. Salahshoori, M. Sadeghi, N. Rashidi, M. Hassanzadeganroudsari, Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane, Polym. Bull. (2019) https://doi.org/10.1007/s00289-019-03031-3. [6] P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Sep. Purif. Technol. 81(2011) 243-264. [7] S.R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H.B. Nulwala, D.R. Luebke, N.L. Rosi, E. Albenze, Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles, J. Mater. Chem. A 3(2015) 5014-5022. [8] J. Ahmad, W.U. Rehman, K. Deshmukh, S.K. Basha, B. Ahamed, K. Chidambaram, Recent advances in poly (amide-B-ethylene) based membranes for carbon dioxide (CO2) capture:A Review, Polym. Plast. Technol. Mater. 58(2019) 366-383. [9] M. Farnam, H. Mukhtar, A. Shariff, A review on glassy polymeric membranes for gas separation, Appl. Mech. Mater. 625(2014) 701-703. [10] Y. Yampolskii, Polymeric gas separation membranes, Macromolecules 45(2012) 3298-3311. [11] X. Li, K. Maindan, P. Deria, Metal-organic frameworks-based electrocatalysis:Insight and future perspectives, comments on inorganic chemistry, 38, 2018166-209. [12] B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials:Recent progress in synthesis and applications, J. Mater. Chem. A 2(2014) 16811-16831. [13] B.R. Pimentel, A. Parulkar, E.k. Zhou, N.A. Brunelli, R.P. Lively, Zeolitic imidazolate frameworks:Next-generation materials for energy-efficient gas separations, ChemSusChem 7(2014) 3202-3240. [14] T. Jose, Y. Hwang, D.W. Kim, M.I. Kim, D.W. Park, Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether, Catal. Today 245(2015) 61-67. [15] M. Steinhauser, S. Hiermaier, A review of computational methods in materials science:Examples from shock-wave and polymer physics, Int. J. Mol. Sci. 10(2009) 5135-5216. [16] M.J. Bojan, W.A. Steele, Chapter Four-Monte Carlo and Molecular Dynamics, in:E.J. Bottani, J.M.D. Tascón (Eds.), Adsorption by Carbons, Elsevier, Amsterdam 2008, pp. 77-101. [17] L. Bouzid, S. Hiadsi, M.O. Bensaid, F.Z. Foudad, Molecular dynamics simulation studies of the miscibility and thermal properties of PMMA/PS polymer blend, Chin. J. Phys. 56(2018) 3012-3019. [18] M. Asghari, M. Sheikh, M. Afsari, M. Dehghani, Molecular simulation and experimental investigation of temperature effect on chitosan-nanosilica supported mixed matrix membranes for dehydration of ethanol via pervaporation, J. Mol. Liq. 246(2017) 7-16. [19] Y. Sun, L. Chen, L. Cui, Y. Zhang, X. Du, Molecular dynamics simulation of crosslinked epoxy resin and its interaction energy with graphene under two typical force fields, Comput. Mater. Sci. 143(2018) 240-247. [20] Z. Gu, R. Yang, J. Yang, X. Qiu, R. Liu, Y. Liu, Z. Zhou, Y. Nie, Dynamic Monte Carlo simulations of effects of nanoparticle on polymer crystallization in polymer solutions, Comput. Mater. Sci. 147(2018) 217-226. [21] P.Y. Yang, S.P. Ju, Y.C. Chuang, H.Y. Chen, Molecular dynamics simulations of PAMAM dendrimer-encapsulated Au nanoparticles of different sizes under different pH conditions, Comput. Mater. Sci. 137(2017) 144-152. [22] M. Eslami, S.J. Nikkhah, S.M. Hashemianzadeh, S.A.S. Sajadi, The compatibility of Tacrine molecule with poly(n-butylcyanoacrylate) and Chitosan as efficient carriers for drug delivery:A molecular dynamics study, Eur. J. Pharm. Sci. 82(2016) 79-85. [23] C. Rungnim, T. Rungrotmongkol, S. Hannongbua, H. Okumura, Replica exchange molecular dynamics simulation of chitosan for drug delivery system based on carbon nanotube, J. Mol. Graph. Model. 39(2013) 183-192. [24] K. Golzar, S. Amjad-Iranagh, M. Amani, H. Modarress, Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes, J. Membr. Sci. 451(2014) 117-134. [25] A. Khosravanian, M. Dehghani, M. Pazirofteh, M. Asghari, A.H. Mohammadi, D. Shahsavari, Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly(benzimidazoles)/nanoparticle oxides composites, Int. J. Hydrog. Energy 43(2018) 2803-2816. [26] R.L. Harrison, Introduction to monte carlo simulation, AIP conference proceedings, AIP 2010, pp. 17-21. [27] J.M. Haile, Molecular Dynamics Simulation, Wiley Professional Paperback Edition, Wiley & Sons, Inc., New York, 1997. [28] J. Chen, K.N. Houk, Molecular modeling:Principles and applications by andrew R. Leach. Addison Wesley Longman Limited:Essex, England, 1996. 595 pp. ISBN 0-582-23933-8. $35, J. Chem. Inf. Comput. Sci. 38(1998) 939. [29] A. Hospital, J.R. Goñi, M. Orozco, J.L. Gelpí, Molecular dynamics simulations:advances and applications, Adv. Appl. Bioinforma. Chem. 8(2015) 37-47. [30] L. Martin, M.M. Bilek, A.S. Weiss, S. Kuyucak, Force fields for simulating the interaction of surfaces with biological molecules, Interface Focus 6(2016), 20150045. [31] C. Gerstl, M. Brodeck, G.J. Schneider, Y. Su, J. Allgaier, A. Arbe, J. Colmenero, D. Richter, Short and intermediate range order in poly(alkylene oxide)s. A neutron diffraction and molecular dynamics simulation study, Macromolecules 45(2012) 7293-7303. [32] A.R. Leach, A.R. Leach, Molecular Modelling:Principles and Applications, Pearson Education Li-mited, Upper Saddle River, 2001. [33] Y. Yampoiskii, I. Pinnau, B. Freeman, Materials Science of Membranes for Gas and Vapor Separation, Wiley & Sons, Inc., New York, 2006. [34] A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation:Performance with mixed gases, Sep. Purif. Technol. 62(1) (2008) 110-117. [35] O. Karagiaridi, M. Lalonde, W. Bury, A.A. Sarjeant, O. Farha, J. Hupp, Opening ZIF-8:A catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers, JACS 134(2012) 18790-18796. [36] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O'Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res. 43(2010) 58-67. [37] Y.R. Chen, L.H. Chen, K.S. Chang, T.H. Chen, Y.F. Lin, K.L. Tung, Structural characteristics and transport behavior of triptycene-based PIMs membranes:A combination study using ab initio calculation and molecular simulations, J. Membr. Sci. 514(2016) 114-124. [38] K. Golzar, H. Modarress, S. Amjad-Iranagh, Separation of gases by using pristine, composite and nanocomposite polymeric membranes:A molecular dynamics simulation study, J. Membr. Sci. 539(2017) 238-256. [39] D.X. Li, B.L. Liu, Y.S. Liu, C.L. Chen, Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation, Cryobiology 56(2008) 114-119. [40] S. Ebnesajjad, Introduction to Plastics, in:E. Baur, K. Ruhrberg, W. Woishnis (Eds.), Chemical Resistance of Engineering Thermoplastics, William Andrew Publishing, Norwich, 2016. [41] Y. Dai, X. Ruan, Z. Yan, K. Yang, M. Yu, H. Li, W. Zhao, G. He, Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture, Sep. Purif. Technol. 166(2016) 171-180. [42] M.A. Tasdelen, S. Oran, Synthesis and characterization of polysulfone-based graft copolymer possessing quaternary ammonium salts via photoiniferter polymerization, J. Turk. Chem. Soc. Sect. A Chem. 5(1) (2017) 117-132. [43] G. Choudalakis, A.D. Gotsis, Free volume and mass transport in polymer nanocomposites, Curr. Opin. Colloid Interface Sci. 17(2012) 132-140. [44] S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci. 9(2016) 1863-1890. [45] Y. Chen, Q.L. Liu, A.M. Zhu, Q.G. Zhang, J.Y. Wu, Molecular simulation of CO2/CH4 permeabilities in polyamide-imide isomers, J. Membr. Sci. 348(2010) 204-212. [46] X. Wu, S. Wang, Self-guided molecular dynamics simulation for efficient conformational search, J. Phys. Chem. B 102(1998) 7238-7250. [47] M. Amani, S. Amjad-Iranagh, K. Golzar, G.M.M. Sadeghi, H. Modarress, Study of nanostructure characterizations and gas separation properties of poly(urethane-urea)s membranes by molecular dynamics simulation, J. Membr. Sci. 462(2014) 28-41. [48] M. Azizi, S.A. Mousavi, CO2/H2 separation using a highly permeable polyurethane membrane:Molecular dynamics simulation, J. Mol. Struct. 1100(2015) 401-414. [49] J. Sacristan, C. Mijangos, Free volume analysis and transport mechanisms of PVC modified with fluorothiophenol compounds. A molecular simulation study, Macromolecules 43(2010) 7357-7367. [50] H. Hu, X. Li, Z. Fang, N. Wei, Q. Li, Small-molecule gas sorption and diffusion in coal:Molecular simulation, Energy 35(2010) 2939-2944. [51] J.G. Wijmans, R.W.J. Baker, The solution-diffusion model:A review, Journal of Membrane Science 107(1-2) (1995) 1-21. [52] W.J. Koros, G.K. Fleming, S.M. Jordan, T.H. Kim, H.H. Hoehn, Polymeric membrane materials for solution-diffusion based permeation separations, Prog. Polym. Sci. 13(1988) 339-401. [53] H.G. Katzgraber, Introduction to Monte Carlo Methods, arXiv preprint arXiv:0905.16292009. [54] L.Schwiebert,E.Hailat,K.Rushaidat,J.Mick,J.Potoff, An Efficient Cell List Implementation for Monte Carlo Simulation on GPUs, arXiv preprint arXiv:1408.37642014. [55] G. Dong, H. Li, V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A 1(2013) 4610-4630. [56] O. Agboola, E.R. Sadiku, T. Mokrani, Chapter 6-Nanomembrane Materials Based on Polymer Blends, in:S. Thomas, R. Shanks, S. Chandrasekharakurup (Eds.), Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems, William Andrew Publishing, Boston 2016, pp. 101-123. [57] S. Sridhar, S. Bee, S.K. Bhargava, Membrane-based gas separation:principle, applications and future potential, Chem. Eng. Dig. (2014) 1-25. [58] R. Rea, S. Ligi, M. Christian, V. Morandi, M. Giacinti Baschetti, M. De Angelis, Permeability and selectivity of ppo/graphene composites as mixed matrix membranes for CO2 capture and gas separation, Polymers 10(2018) 129-147. [59] H.B.T. Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Trans. 41(2012) 14003-14027. [60] R. Murali, S. Sridhar, T. Sankarshana, Y.V.L. Ravikumar, Gas Permeation Behavior of Pebax-1657 Nanocomposite Membrane Incorporated with Multiwalled Carbon Nanotubes, Ind. Eng. Chem. Res. 49(2010) 6530-6538. [61] B.E. Poling, J.M. Prausnitz, J. O'Connell, The Properties of Gases and Liquids, McGrawHill Company, New York, 2000. [62] S. Meshkat, S. Kaliaguine, D. Rodrigue, Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation, Sep. Purif. Technol. 200(2018) 177-190. [63] P.M. Budd, N.B. McKeown, Highly permeable polymers for gas separation membranes, Polym. Chem. 1(2010) 63-68. |