[1] B. Niu, L.J. Jin, Y. Li, Z.W. Shi, Y.T. Li, H.Q. Hu, Mechanism of hydrogen transfer and role of solvent during heating-up stage of direct coal liquefaction, Fuel Process. Technol. 160(2017) 130-135. [2] P. Hao, Z.Q. Bai, Z.T. Zhao, J.C. Yan, X. Li, Z.X. Guo, J.L. Xu, W.Q. Bai, Study on the preheating stage of low rank coals liquefaction:Product distribution, chemical structural change of coal and hydrogen transfer, Fuel Process. Technol. 159(2017) 153-159. [3] M. Sun, D. Zhang, Q.X. Yao, Y.Q. Liu, X.P. Su, C.Q. Jia, Q.Q. Hao, X.X. Ma, Separation and composition analysis of GC/MS analyzable and unanalyzable parts from coal tar, Energy Fuel 32(2018) 7404-7411. [4] J. Lee, Y. Choi, J. Shin, J.K. Lee, Selective hydrocracking of tetralin for light aromatic hydrocarbons, Catal. Today 265(2016) 144-153. [5] C. He, X.J. Min, H.A. Zheng, Y.J. Fan, Q.X. Yao, D. Zhang, X. Tang, C. Wan, M. Sun, X.X. Ma, Study on the volatiles and kinetic of in-situ catalytic pyrolysis of swelling low rank coal, Energy Fuel 31(2017) 13558-13571. [6] J. Escobar, M.C. Barrera, V. Santes, J.E. Terrazas, Naphthalene hydrogenation over Mg-doped Pt/Al2O3, Catal. Today 296(2017) 197-204. [7] S.J. Ardakani, K.J. Smith, A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts, Appl. Catal. A-Gen. 403(2011) 36-47. [8] X.B. Liu, S.J. Ardakani, K.J. Smith, The effect of Mg and K addition to a Mo2C/HY catalyst for the hydrogenation and ring opening of naphthalene, Catal. Commun. 12(2011) 454-458. [9] W.G. Cui, W.H. Li, R. Gao, H.X. Ma, D. Li, M.L. Niu, X. Lei, Hydroprocessing of lowtemperature coal tar for the production of clean fuel over fluorinated NiW/Al2O3-SiO2 catalyst, Energy Fuel 31(2017) 3768-3783. [10] M.B. Figueiredo, Z. Jotic, P.J. Deuss, R.H. Vederbosch, H.J. Heeres, Hydrotreatment of pyrolytic lignins to aromatics and phenolics using heterogeneous catalysts, Fuel Process. Technol. 189(2019) 28-38. [11] Z. Mohammad, A.Z. Moghaddam, A. Mehdi, The influence of nickel loading on reducibility of NiO/Al2O3 catalysts synthesized by sol-gel method, Chem. Eng. Res. Bull. 14(2010) 97-102. [12] P. Vozka, D. Orazgaliyeva, P. Simacek, J. Blazek, G. Kilaz, Activity comparison of NiMo/Al2O3 and Ni-Mo/TiO2 catalysts in hydroprocessing of middle petroleum distillates and their blend with rapeseed oil, Fuel Process. Technol. 167(2017) 684-694. [13] S.R. Kirumakki, B.G. Shpeizer, G.V. Sagar, K.V.R. Chary, A. Clearfield, Hydrogenation of naphthalene over NiO/SiO2-Al2O3 catalysts:Structure-activity correlation, J. Catal. 242(2006) 319-331. [14] F. Li, X.D. Yi, J.B. Zheng, H. Jin, W.P. Fang, A pretreatment method of Ni/γ-Al2O3 catalyst for naphthalene hydrogenation, Catal. Commun. 11(2009) 266-271. [15] A.C.A. Monteiro-Gezork, A. Effendi, J.M. Winterbottom, Hydrogenation of naphthalene on NiMo-and Ni/Al2O3 catalysts:Pre-treatment and deactivation, Catal. Today 128(2007) 63-73. [16] Y. Cheng, H.L. Fan, S.X. Wu, Q. Wang, J. Guo, L. Gao, B.N. Zong, B.X. Han, Enhancing the selectivity of the hydrogenation of naphthalene to tetralin by high temperature water, Green Chem. 11(2009) 1061-1065. [17] X. Chen, Y. Ma, L. Wang, Z.H. Yang, S.H. Jin, L.L. Zhang, C.H. Liang, Nickel-aluminum intermetallic compounds as highly selective and stable catalysts for the hydrogenation of naphthalene to tetralin, Chemcatchem. 7(2015) 978-983. [18] M. Pang, X.K. Wang, W. Xia, M. Muhler, C.H. Liang, Mo(VI)-melamine hybrid as single-source precursor to pure-phase β-Mo2C for the selective hydrogenation of naphthalene to tetralin, Ind. Eng. Chem. Res. 52(2013) 4564-4571. [19] P.Y. Gong, B.S. Li, X.L. Kong, J.J. Liu, S.L. Zuo, Well-dispersed Ni nanoclusters on the surfaces of MFI nanosheets as highly efficient and selective catalyst for the hydrogenation of naphthalene to tetralin, Appl. Surf. Sci. 423(2017) 433-442. [20] K. Kim, J. Oh, T.W. Kim, J.H. Park, J.W. Han, Y.W. Suh, Different catalytic behavior of Pd and Pt metals in decalin dehydrogenation to naphthalene, Catal. Sci. Technol. 7(2017) 3728-3735. [21] A.J. Wang, L.F. Ruan, Y. Teng, X. Li, M.H. Lu, J. Ren, Y. Wang, Y.K. Hu, Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts, J. Catal. 229(2005) 314-321. [22] D. Li, W.G. Cui, X.P. Zhang, Q.H. Meng, Q.C. Zhou, B.Q. Ma, M.L. Niu, W.H. Li, Production of clean fuels by catalytic hydrotreating a low temperature coal tar distillate in a Pilot-Scale reactor, Energy Fuel 31(2017) 11495-11508. [23] M. Shah, A. Bordoloi, A.K. Nayak, P. Mondal, Effect of Ti/Al ratio on the performance of Ni/TiO2-Al2O3 catalyst for methane reforming with CO2, Fuel Process. Technol. 192(2019) 21-35. [24] B.W. Wang, Y.Q. Yao, S.H. Liu, Z.Y. Hu, Z.H. Li, X.B. Ma, Effects of of MoO3 loading and calcination temperature on the catalytic performance of MoO3/CeO2 toward sulfurresistant methanation, Fuel Process. Technol. 138(2019) 263-270. [25] H.Y. Wang, T.T. Jiao, Z.X. Li, C.S. Li, S.J. Zhang, J.L. Zhang, Study on palm oil hydrogenation for clean fuel over Ni-Mo-W/gamma-Al2O3-ZSM-5 catalyst, Fuel Process. Technol. 139(2015) 91-99. [26] L.H. Liu, D. Liu, B. Liu, G.C. Li, Y.Q. Liu, C.G. Liu, Relation between the morphology of MoS2 in NiMo catalyst and its selectivity for dibenzothiophene hydrodesulfurization, J. Fuel Chem. Tech. 39(2011) 838-843. [27] Z.Q. Wang, M.H. Zhang, W. Li, K.Y. Tao, Synthesis of Ni-Mo2N/SiO2 nanocomposite catalyst and its catalytic activity for tetralin hydrogenation, Chinese J. Catal. 29(2008) 292-296. [28] S.C. Kim, The catalytic oxidation of aromatic hydrocarbons over supporte metal oxide, J. Hazard. Mater. 91(2002) 285-299. [29] S.M. Saqer, D.I. Kondarides, X.E. Verykios, Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3, Appl. Catal. B-Environ. 103(2011) 275-286. [30] R.J. Sun, S.G. Shen, D.F. Zhang, Y.P. Ren, J.M. Fan, Hydrofining of coal tar light oil to produce high octane gasoline blending components over γ-Al2O3-and η-Al2O3-supported catalysts, Energy Fuel 29(2015) 7005-7013. [31] D. Li, T. Sato, M. Imamura, H. Shimada, A. Nishijima, The effect of boron on HYD, HC and HDS activities of model compounds over Ni-Mo/γ-Al2O3-B2O3 catalysts, Appl. Catal. B-Environ. 16(1998) 255-260. [32] R. Kumar, K. Kumar, N.V. Choudary, K.K. Pant, Effect of support materials on the performance of Ni-based catalysts in tri-reforming of methane, Fuel Process. Technol. 186(2019) 40-52. [33] J. Światowska-mrowiecka, S.D. Diesbach, V. Maurice, S. Zanna, L. Klein, E. Briand, I. Vickridge, P. Marcus, Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA, J. Phys. Chem. C 112(2008) 11050-11058. [34] Y.J. Lee, D. Barrera, K.Y. Luo, J.W.P. Hsu, In situ chemical oxidation of ultrasmall MoOx nanoparticles in suspensions, J. Nanotech. 9(2012) 1-5. [35] S.T. Hong, D.R. Park, S.J. Yoo, J.D. Kim, H.S. Park, Characterization of the active phase of NiMo/Al2O3 hydrodesulfurization catalysts, Res. Chem. Intermediat. 32(2006) 857-870. [36] G. Garbarino, P. Riani, A. Infantes-Molina, E. Rodríguez-Castellón, G. Busca, On the detectability limits of nickel species on NiO/γ-Al2O3 catalytic materials, Appl. Catal. A-Gen. 525(2016) 180-189. [37] J. Dou, Y. Tang, L.H. Nie, C.M. Andolina, X.Y. Zhang, S. House, Y. Li, J. Yang, F. Tao, Complete oxidation of methane on Co3O4/CeO2 nanocomposite:A synergic effect, Catal. Today 311(2018) 48-55. [38] Z.Y. Liu, S.Y. Yao, A. Johnston-Peck, W.Q. Xu, J.A. Rodriguez, S.D. Senanayake, Methanol steam reforming over Ni-CeO2 model and powder catalysts:Pathways to high stability and selectivity for H2/CO2 production, Catal. Today 311(2018) 74-80. [39] T. Kimura, H. Imai, X. Li, K. Sakashita, S. Asaoka, M.N. Akhtar, S.S. Al-Khattaf, X-ray photoelectron spectroscopy study of Mo-Ni/γ-Al2O3 catalysts for hydroconversion of fatty oil derivatives, Arab. J. Sci. Eng. 39(2014) 6617-6625. [40] C. Fernández-Vargas, J. Ramírez, A. Gutiérrez-Alejandre, F. Sánchez-Minero, R. Cuevas-García, P. Torres-Mancera, Synthesis, characterization and evaluation of NiMo/SiO2-Al2O3 catalysts prepared by the pH-swing method, Catal. Today 130(2008) 337-344. [41] M. Brorson, A. Carlsson, H. Topsøe, The morphology of MoS2, WS2, Co-Mo-S, Ni-MoS and Ni-W-S nanoclusters in hydrodesulfurization catalysts revealed by HAADFSTEM, Catal. Today 123(2007) 31-36. [42] H. Ding, D. Zhao, Y.J. Gao, Response surface optimization of cholesterol extraction from lanolin alcohol by selective solvent crystallization, Chem. Pap. 71(2017) 71-79. [43] M. Hojjat, H. Nayebzadeh, M. Khadangi-Mahrood, B. Rahmani-Vahid, Optimization of process conditions for biodiesel production over CaO-Al2O3/ZrO2 catalyst using response surface methodology, Chem. Pap. 71(2017) 689-698. [44] Y. Wang, H. Wu, M.H. Zong, Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer, Bioresour. Technol. 99(2008) 7232-7237. [45] C.C. Liao, T.W. Chung, Optimization of process conditions using response surface methodology for the microwave-assisted transesterification of Jatropha oil with KOH impregnated CaO as catalyst, Chem. Eng. Res. Des. 91(2013) 2457-2464. [46] K. Ito, Y. Kogasaka, H. Kurokawa, M.A. Ohshima, K. Sugiyama, H. Miura, Preliminary study on mechanism of naphthalene hydrogenation to form decalins via tetralin over Pt/TiO2, Fuel Process. Technol. 79(2002) 77-80. [47] R. Feiner, N. Schwaiger, H. Pucher, L. Ellmaier, M. Derntl, P. Pucher, M. Siebenhofer, Chemical loop systems for biochar liquefaction:hydrogenation of naphthalene, RSC Adv. 4(2014) 34955-34962. [48] M. Usman, D. Li, R. Razzaq, M. Yaseen, C.S. Li, S.J. Zhang, Novel MoP/HY catalyst for the selective conversion of naphthalene to tetralin, J. Ind. Eng. Chem. 23(2015) 21-26. [49] M. Pang, C.Y. Liu, W. Xia, M. Muhler, C.H. Liang, Activated carbon supported molybdenum carbides as cheap and highly efficient catalyst in the selective hydrogenation of naphthalene to tetralin, Green Chem. 14(2012) 1272-1276. |