[1] J.P. Hallett, T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2, Chem. Rev. 111 (5) (2011) 3508-3576. [2] K.R. Seddon, A taste of the future, Nat. Mater 2 (6) (2003) 363-365. [3] E. Markevich, V. Baranchugov, D. Aurbach, On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5V Li ion batteries, Electrochem. Commun. 8 (8) (2006) 1331-1334. [4] A. Lewandowski, A. Świderska-Mocek, Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies, J. Power Sources 194 (2) (2009) 601-609. [5] M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, An ultrafast rechargeable aluminium-ion battery, Nature 520 (7547) (2015) 324-328. [6] Y. Zhou, S. Gong, X. Xu, Z. Yu, J. Kiefer, Z. Wang, The interactions between polar solvents (methanol, acetonitrile, dimethylsulfoxide) and the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, J. Mol. Liq. 299 (2020) 112159. [7] H. Abe, A. Takeshita, H. Sudo, K. Akiyama, CO2 capture and surface structures of ionic liquid-propanol solutions, J. Mol. Liq. 301 (2020) 112445. [8] C. Herrera, G. García, R. Alcalde, M. Atilhan, S. Aparicio, Interfacial properties of 1-ethyl-3-methylimidazolium glycinate ionic liquid regarding CO2, SO2 and water from molecular dynamics, J. Mol. Liq. 220 (2016) 910-917. [9] M.G. Freire, L.M.N.B.F. Santos, A.M. Fernandes, J.A.P. Coutinho, I.M. Marrucho, An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems, Fluid Phase Equilib. 261 (1-2) (2007) 449-454. [10] A.E. Visser, M.P. Jensen, I. Laszak, K.L. Nash, G.R. Choppin, R.D. Rogers, Uranyl coordination environment in hydrophobic ionic liquids: An in situ investigation, Inorg. Chem. 42 (7) (2003) 2197-2199. [11] M.G. Freire, C.M.S.S. Neves, P.J. Carvalho, R.L. Gardas, A.M. Fernandes, I.M. Marrucho, L.M.N.B.F. Santos, J.A.P. Coutinho, Mutual solubilities of water and hydrophobic ionic liquids, J. Phys. Chem. B 111 (45) (2007) 13082-13089. [12] P. Tshibangu, S. Ndwandwe, E. Dikio, Density, viscosity and conductivity study of 1-butyl-3-methylimidazolium bromide, Int. J. Electrochem. Sci. 6 (6) (2011) 2201-2213. [13] J. Widegren, E. Saurer, K. Marsh, J. Magee, Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity, J. Chem. Thermodyn. 37 (2005) 569-575. [14] B. McAuley, K. Seddon, A. Stark, M. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Abstr. Pap. -Am. Chem. Soc. 221st (2001), IEC-277. [15] L. Tomé, F. Varanda, M. Freire, I. Marrucho, Towards an understanding of the mutual solubilities of water and hydrophobic ionic liquids in the presence of salts: The anion effect, J. Phys. Chem. B 113 (2009) 2815-2825. [16] M.G. Freire, P.J. Carvalho, R.L. Gardas, I.M. Marrucho, L.M.N.B.F. Santos, J.A.P. Coutinho, Mutual solubilities of water and the [Cnmim][Tf2N] hydrophobic ionic liquids, J. Phys. Chem. B 112 (6) (2008) 1604-1610. [17] K. Jiang, X.M. Liu, H.Y. He, J.J. Wang, S.J. Zhang, Insight into the formation and permeability of ionic liquid unilamellar vesicles by molecular dynamics simulation, Soft Matter 16 (10) (2020) 2605-2610. [18] X.M. Liu, X.Q. Yao, Y.L. Wang, S.J. Zhang, Mesoscale structures and mechanisms in ionic liquids, Particuology 48 (2020) 55-64. [19] J.K. Konieczny, B. Szefczyk, Structure of alkylimidazolium-based ionic liquids at the interface with vacuum and water—a molecular dynamics study, J. Phys. Chem. B 119 (9) (2015) 3795-3807. [20] S.S. Sarangi, S.G. Raju, S. Balasubramanian, Molecular dynamics simulations of ionic liquid-vapour interfaces: effect of cation symmetry on structure at the interface, PCCP 13 (7) (2011) 2714-2722. [21] M.E. Perez-Blanco, E.J. Maginn, Molecular dynamics simulations of carbon dioxide and water at an ionic liquid interface, J. Phys. Chem. B 115 (35) (2011) 10488-10499. [22] N. Sieffert, G. Wipff, The [BMI][Tf2N] ionic liquid/water binary system: A molecular dynamics study of phase separation and of the liquid liquid interface, J. Phys. Chem. B 110 (26) (2006) 13076-13085. [23] T. Koishi, Molecular dynamics study of the effect of water on hydrophilic and hydrophobic ionic liquids, J. Phys. Chem. B 122 (51) (2018) 12342-12350. [24] G. Hantal, M. Sega, S. Kantorovich, C. Schröder, M. Jorge, Intrinsic structure of the interface of partially miscible fluids: an application to ionic liquids, J. Phys. Chem. C 119 (51) (2015) 28448-28461. [25] T.Y. Li, Z.C. Zhao, X.D. Zhang, X.C. Sun, Molecular dynamics studies on liquid/vapor interface properties and structures of 1-ethyl-3-methylimidazolium dimethylphosphate-water, J. Phys. Chem. B 121 (14) (2017) 3087-3098. [26] J.G. McDaniel, A. Verma, On the miscibility and immiscibility of ionic liquids and water, J. Phys. Chem. B 123 (25) (2019) 5343-5356. [27] R. Lynden-Bell, J. Kohanoff, M. Popolo, Simulation of interfaces between room temperature ionic liquids and other liquids, Faraday Discuss. 129 (2005) 57-67. [28] K.R. Ramya, P. Kumar, A. Kumar, A. Venkatnathan, Interplay of phase separation, tail aggregation, and micelle formation in the nanostructured organization of hydrated imidazolium ionic liquid, J. Phys. Chem. B 118 (29) (2014) 8839-8847. [29] G. Hantal, I. Voroshylova, M.N.D.S. Cordeiro, M. Jorge, A systematic molecular simulation study of ionic liquid surfaces using intrinsic analysis methods, PCCP 14 (15) (2012) 5200-5213. [30] M. Lísal, Z. Posel, P. Izák, Air-liquid interfaces of imidazolium-based [TF2N-] ionic liquids: insight from molecular dynamics simulations, PCCP 14 (15) (2012) 5164-5177. [31] R. Biswas, P. Ghosh, T. Banerjee, S. Ali, K.T. Shenoy, Extractive insights in the cesium ion partitioning with bis(2-propyloxy)-calix [4]crown-6 and dicyclohexano-18-crown-6 in ionic liquid-water biphasic systems, J. Mol. Liq. 241 (2017) 279-291. [32] Z. Pouramini, A. Mohebbi, M.H. Kowsari, The possibility of cadmium extraction to the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate in the presence of hydrochloric acid: a molecular dynamics study of the water-IL interface, Theor. Chem. Acc. 138 (8) (2019) 99. [33] T. Iwahashi, Y. Sakai, D. Kim, T. Ishiyama, A. Morita, Y. Ouchi, Nonlinear vibrational spectroscopic studies on water/ionic liquid([Cnmim]TFSA: n = 4, 8) interfaces, Faraday Discuss. 154 (2012) 289-301. [34] W.L. Jorgensen, D.S. Maxwell, J. TiradoRives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (45) (1996) 11225-11236. [35] J.N.C. Lopes, J. Deschamps, A.A.H. Padua, Modeling ionic liquids using a systematic all-atom force field, J. Phys. Chem. B 108 (30) (2004) 11250. [36] Toukan and Rahman, Molecular-dynamics study of atomic motions in water, Phys. Rev. B: Condens. Matter 31 (5) (1985) 2643-2648. [37] J. Wang, C. Yuan, Y. Han, Y. Wang, X. Liu, S. Zhang, X. Yan, Trace water as prominent factor to induce peptide self-assembly: dynamic evolution and governing interactions in ionic liquids, Small 13 (44) (2017) 1702175. [38] J. Zhou, X. Liu, S. Zhang, X. Zhang, G. Yu, Effect of small amount of water on the dynamics properties and microstructures of ionic liquids, AIChE J. 63 (6) (2017) 2248-2256. [39] J. Qian, X. Liu, R. Yan, C. Li, X. Zhang, S. Zhang, Effect of ion cluster on concentration of long-alkyl-chain ionic liquids aqueous solution by nanofiltration, Ind. Eng. Chem. Res. 57 (22) (2018) 7633-7642. [40] M.J. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1 (2015) 19-25. [41] L. Martinez, R. Andrade, E.G. Birgin, J.M. Martinez, PACKMOL: a package for building initial configurations for molecular dynamics simulations, J. Comput. Chem. 30 (13) (2009) 2157-2164. [42] S. Nose, A molecular dynamics method for simulations in the canonical ensemble (Reprinted from Molecular Physics, vol 52, pg 255, 1984), Mol. Phys. 100 (1) (2002) 191-198. [43] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52 (1981) 7182-7190. [44] R.G. Seoane, E.J. Gonzalez, B. Gonzalez, 1-Alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ionic liquids as solvents in the separation of azeotropic mixtures, J. Chem. Thermodyn. 53 (2012) 152-157. [45] J.E. Kim, J.S. Lim, J.W. Kang, Measurement and correlation of solubility of carbon dioxide in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids, Fluid Phase Equilib. 306 (2) (2011) 251-255. [46] M. Hakala, K. Nygard, S. Manninen, S. Huotari, T. Buslaps, A. Nilsson, L.G.M. Pettersson, K. Hamalainen, Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering, J. Chem. Phys. 125 (8) (2006). [47] W. Zheng, P. Cao, Y. Yuan, C. Huang, Z. Wang, W. Sun, L. Zhao, Experimental and modeling study of isobutane alkylation with C4 olefin catalyzed by Bronsted acidic ionic liquid/sulfuric acid, Chem. Eng. J. 377 (2019) 119578. [48] Q. Huang, Y. Huang, Y. Luo, L. Li, G. Zhou, X. Chen, Z. Yang, Molecular-level insights into the structures, dynamics, and hydrogen bonds of ethylammonium nitrate protic ionic liquid at the liquid-vacuum interface, PCCP 22 (24) (2020) 13780-13789. [49] D. Yang, F. Fu, L. Li, Z. Yang, Z. Wan, Y. Luo, N. Hu, X. Chen, G. Zeng, Unique orientations and rotational dynamics of a 1-butyl-3-methyl-imidazolium hexafluorophosphate ionic liquid at the gas-liquid interface: the effects of the hydrogen bond and hydrophobic interactions, PCCP 20 (17) (2018) 12043-12052. |