[1] F.H. van der Heyden, D. Stein, C. Dekker, Streaming currents in a single nanofluidic channel, Phys. Rev. Lett. 95 (2005) 116104. [2] D.K. Kim, C.H. Duan, Y.F. Chen, A. Majumdar, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels, Microfluid. Nanofluid. 9 (2010) 1215-1224. [3] C. Lian, H.L. Liu, C.Z. Li, J.Z. Wu, Hunting ionic liquids with large electrochemical potential windows, AIChE J. 65 (2019) 804-810. [4] S. Liu, Q. Pu, L. Gao, C. Korzeniewski, C. Matzke, From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell, Nano Lett. 5 (2005) 1389-1393. [5] S.J. Kim, S.H. Ko, K.H. Kang, J. Han, Direct seawater desalination by ion concentration polarization, Nat. Nanotechnol. 8 (2013) (2010) 609. [6] C.C. Lai, C.J. Chang, Y.S. Huang, W.C. Chang, F.G. Tseng, Y.L. Chueh, Desalination of saline water by nanochannel arrays through manipulation of electrical double layer, Nano Energy 12 (2015) 394-400. [7] Y.C. Wang, A.L. Stevens, J. Han, Million-fold preconcentration of proteins and peptides by nanofluidic filter, Anal. Chem. 77 (2005) 4293-4299. [8] K.D. Huang, R.J. Yang, A nanochannel-based concentrator utilizing the concentration polarization effect, Electrophoresis 29 (2010) 4862-4870. [9] J. Yang, F.Z. Lu, L.W. Kostiuk, D.Y. Kwok, Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena, J. Micromech. Microeng. 13 (2003) 963-970. [10] W. Olthuis, B. Schippers, J. Eijkel, A. van den Berg, Energy from streaming current and potential, Sensor. Actuat. B-Chem. 111 (2005) 385-389. [11] M.S. Chun, T.S. Lee, N.W. Choi, Microfluidic analysis of electrokinetic streaming potential induced by microflows of monovalent electrolyte solution, J. Micromech. Microeng. 15 (2005) 710-719. [12] H. Daiguji, P.D. Yang, A.J. Szeri, A. Majumdar, Electrochemomechanical energy conversion in nanofluidic channels, Nano Lett. 4 (2004) 2315-2321. [13] A. Mansouri, S. Bhattacharjee, L. Kostiuk, High-power electrokinetic energy conversion in a glass microchannel array, Lab. Chip. 12 (2012) 4033-4036. [14] M.C. Lu, S. Satyanarayana, R. Karnik, A. Majumdar, C.C. Wang, A mechanicalelectrokinetic battery using a nano-porous membrane, J. Micromech. Microeng. 16 (2006) 667-675. [15] W. Sparreboom, A. van den Berg, J.C. Eijkel, Principles and applications of nanofluidic transport, Nat. Nanotechnol. 4 (2009) 713-720. [16] C. Davidson, X.C. Xuan, Electrokinetic energy conversion in slip nanochannels, J. Power Sources 179 (2008) 297-300. [17] D. Erickson, D. Li, Streaming Potential and Streaming Current Methods for Characterizing Heterogeneous Solid Surfaces, J. Colloid Interf. Sci. 237 (2001) 283-289. [18] F.H. van der Heyden, D.J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Electrokinetic energy conversion efficiency in nanofluidic channels, Nano Lett. 6 (2006) 2232-2237. [19] A. Mansouri, L. Kostiuk, Publisher correction: maximizing electrokinetic energy conversion via the intersecting asymptotes method, Sci. Rep. 9 (2019) 6187. [20] R. Qiao, N.R. Aluru, Charge inversion and flow reversal in a nanochannel electro-osmotic flow, Phys. Rev. Lett. 92 (2004) 198301. [21] R.S. Foote, J. Khandurina, S.C. Jacobson, J.M. Ramsey, Preconcentration of proteins on microfluidic devices using porous silica membranes, Anal. Chem. 77 (2005) 57-63. [22] D. Stein, M. Kruithof, C. Dekker, Surface-charge-governed ion transport in nanofluidic channels, Phys. Rev. Lett. 93 (2004) 035901. [23] B. Lin, H. Li, H. An, W.B. Hao, J.J. Wei, Y.Z. Dai, C.S. Ma, G.D. Yang, Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with welldesigned high-speed charge transfer nanochannels towards high efficiency photocatalytic hydrogen evolution, Appl. Catal. B: Environ. 220 (2018) 542-552. [24] W. Chen, Z.Q. Wu, X.H. Xia, J.J. Xu, H.Y. Chen, Anomalous diffusion of electrically neutral molecules in charged nanochannels, Angew. Chem. Int. Edit. 49 (2010) 7943-7947. [25] J.K. Chen, W.T. Chen, C.C. Cheng, C.C. Yu, J.P. Chu, Metallic glass nanotube arrays: Preparation and surface characterizations, Mater. Today 21 (2018) 178-185. [26] J. Zhu, A. Imam, R. Crane, K. Lozano, V.N. Khabashesku, E.V. Barrera, Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength, Compos. Sci. Technol. 67 (2007) 1509-1517. [27] J.P. Hsu, Y.M. Chen, C.Y. Lin, S. Tseng, Electrokinetic ion transport in an asymmetric double-gated nanochannel with a pH-tunable zwitterionic surface, Phys. Chem. Chem. Phys. 21 (2019) 7773-7780. [28] S.J. Kim, Y.A. Song, J. Han, Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications, Chem. Soc. Rev. 39 (2010) 912-922. [29] C. Lian, H. Su, C. Li, H. Liu, J. Wu, Non-negligible roles of pore size distribution on electroosmotic flow in nanoporous materials, ACS Nano 13 (2019) 8185-8192. [30] C. Lian, M. Janssen, H. Liu, R. van Roij, Blessing and curse: How a supercapacitor’s large capacitance causes its slow charging, Phys. Rev. Lett. 124 (2020) 076001. [31] R.J. Messinger, T.M. Squires, Suppression of electro-osmotic flow by surface roughness, Phys. Rev. Lett. 105 (2010) 144503. [32] D. Kim, E. Darve, Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels, Phys. Rev. E 73 (2006) 12. [33] N.V. Priezjev, Effect of surface roughness on rate-dependent slip in simple fluids, J. Chem. Phys. 127 (2007) 144708. [34] E. Brunet, A. Ajdari, Generalized Onsager relations for electrokinetic effects in anisotropic and heterogeneous geometries, Phys. Rev. E 69 (2004) 016306. [35] R.J. Hunter, Zeta Potential in Colloid Science, Academic Press, 1981. [36] Y. Zhang, Y. He, M. Tsutsui, X.S. Miao, M. Taniguchi, Short channel effects on electrokinetic energy conversion in solid-state nanopores, Sci. Rep. 7 (2017) 46661. [37] J. Catalano, H.V. Hamelers, A. Bentien, P.M. Biesheuvel, Revisiting Morrison and Osterle 1965: the efficiency of membrane-based electrokinetic energy conversion, J. Phys. Condens Mat. 28 (2016) 324001. [38] S. Haldrup, J. Catalano, M.R. Hansen, M. Wagner, G.V. Jensen, J.S. Pedersen, A. Bentien, High electrokinetic energy conversion efficiency in charged nanoporous nitrocellulose/sulfonated polystyrene membranes, Nano Lett. 15 (2015) 1158-1165. [39] C.C. Chang, R.J. Yang, Electrokinetic energy conversion in micrometer-length nanofluidic channels, Microfluid. Nanofluid. 9 (2010) 225-241. [40] X.C. Xuan, D.Q. Li, Thermodynamic analysis of electrokinetic energy conversion, J. Power Sources 156 (2006) 677-684. [41] M. Malekidelarestaqi, A. Mansouri, S.F. Chini, Electrokinetic energy conversion in a finite length superhydrophobic microchannel, Chem. Phys. Lett. 703 (2018) 72-79. [42] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967. [43] D. van Weersel, Numerical Analysis of Electrokinetic Flow through a Cylindrical Channel with a Charge Regulation Boundary Condition, Thesis, Utrecht University, The Kingdom of the Netherlands, 2016. [44] D.-E. Jiang, Z. Jin, J. Wu, Oscillation of capacitance inside nanopores, Nano Lett. 11 (2011) 5373-5377. [45] G. Feng, D.-E. Jiang, P.T. Cummings, Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces, J. Chem. Theory Comput. 8 (2012) 1058-1063. [46] C. Lian, D.-E. Jiang, H. Liu, J. Wu, A generic model for electric double layers in porous electrodes, J. Phys. Chem. C 120 (2016) 8704-8710. [47] T. Mo, S. Bi, Y. Zhang, V. Presser, X. Wang, Y. Gogotsi, G. Feng, Ion structure transition enhances charging dynamics in subnanometer pores, ACS Nano 14 (2020) 2395-2403. [48] D.G. Haywood, Z.D. Harms, S.C. Jacobson, Electroosmotic flow in nanofluidic channels, Anal. Chem. 86 (2014) 11174-11180. |