[1] P. Drogui, S. Elmaleh, M. Rumeau, C. Bernard, A. Rambaud, Hydrogen peroxide production by water electrolysis: Application to disinfection, J. Appl. Electrochem. 31 (8) (2001) 877–882. [2] M. Nakayama, H. Nakano, H. Hamada, N. Itami, R. Nakazawa, S. Ito, A novel bioactive haemodialysis system using dissolved dihydrogen (H2) produced by water electrolysis: A clinical trial, Nephrol. Dial. Transplant 25 (9) (2010) 3026–3033. [3] X.Z. Gong, Y. Wu, Z. Wang, M.Y. Wang, Z.C. Guo, Changes of total organic carbon and kinetics of ultrasonic-assisted coal water slurry electrolysis in NaOH system, Fuel Process. Technol. 119 (2014) 166–172. [4] W.P. Pan, K.F. Chen, N. Ai, Z. Lü, S.P. Jiang, Mechanism and kinetics of Ni-Y2O3-ZrO2 Hydrogen electrode for water electrolysis reactions in solid oxide electrolysis cells, J. Electrochem. Soc. 163 (2) (2015) F106–F114. [5] T. Ioroi, K. Yasuda, PEM-type water electrolysis/fuel cell reversible cell with low PGM catalyst loadings, ECS Trans. 69 (17) (2015) 919–924. [6] S. Roychowdhury, V. Kain, Embrittlement of a duplex stainless steel in acidic environment under applied cathodic potentials, J. Mater. Eng. Perform. 17 (5) (2008) 702–707. [7] D.P. Zhan, J. Velmurugan, M.V. Mirkin, Adsorption/desorption of hydrogen on Pt nanoelectrodes: Evidence of surface diffusion and spillover, J. Am. Chem. Soc. 131 (41) (2009) 14756–14760. [8] L.M. Vračar, N.V. Krstajić, V.R. Radmilović, M.M. Jakšić, Electrocatalysis by nanoparticles-oxygen reduction on ebonex/Pt electrode, J. Electroanal. Chem. 587 (1) (2006) 99–107. [9] T.H. Zhang, A.B. Anderson, Oxygen reduction on platinum electrodes in base: Theoretical study, Electrochimica Acta 53 (2) (2007) 982–989. [10] E. Salernitano, L. Giorgi, T. Dikonimos Makris, Direct growth of carbon nanofibers on carbon-based substrates as integrated gas diffusion and catalyst layer for polymer electrolyte fuel cells, Int. J. Hydrog. Energy 39 (27) (2014) 15005–15016. [11] S. Sata, M.I. Awad, M.S. El-Deab, T. Okajima, T. Ohsaka, Hydrogen spillover phenomenon: Enhanced reversible hydrogen adsorption/desorption at Ta2O5-coated Pt electrode in acidic media, Electrochimica Acta 55 (10) (2010) 3528–3536. [12] R.F. de Souza, J.C. Padilha, R.S. Gonçalves, J. Rault-Berthelot, Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis, Electrochem. Commun. 8 (2) (2006) 211–216. [13] E.S. Tok, H.C. Kang, Reaction path for hydrogen adsorption and desorption on Si(100)-(2×1), J. Chem. Phys. 115 (14) (2001) 6550–6556. [14] C.L. Green, A. Kucernak, Determination of the platinum and ruthenium surface areas in platinum–ruthenium alloy electrocatalysts by underpotential deposition of copper. I. unsupported catalysts, J. Phys. Chem. B 106 (5) (2002) 1036–1047. [15] Suffredini.H.B, Tricoli.V, Avaca.L.A, Vatistas.N. Sol-gel method to prepare active pt-RuO2, coatings on carbon powder for methanol oxidation, Electrochemistry Communications. 6(10), 1025-1028. [16] D.A. Stevens, J.M. Rouleau, R.E. Mar, R.T. Atanasoski, A.K. Schmoeckel, M.K. Debe, J.R. Dahn, Enhanced CO-tolerance of Pt–Ru–Mo hydrogen oxidation catalysts, J. Electrochem. Soc. 154 (12) (2007) B1211. [17] R. Solmaz, A. Döner, G. Kardaş, Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction, Electrochem. Commun. 10 (12) (2008) 1909–1911. [18] K.D. Beard, D. Borrelli, A.M. Cramer, D. Blom, J.W. van Zee, J.R. Monnier, Preparation and structural analysis of carbon-supported Co core/Pt shell electrocatalysts using electroless deposition methods, ACS Nano 3 (9) (2009) 2841–2853. [19] D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V.R. Stamenkovic, N.M. Marković, The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum, Nat. Chem. 1 (6) (2009) 466–472. [20] C. Stoffelsma, P. Rodriguez, G. Garcia, N. Garcia-Araez, D. Strmcnik, N.M. Marković, M.T.M. Koper, Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations, J. Am. Chem. Soc. 132 (45) (2010) 16127–16133. [21] D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V.R. Stamenkovic, N.M. Markovic, The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum, Nat. Chem. 1 (6) (2009) 466–472. [22] M. Nakamura, Y. Nakajima, N. Hoshi, H. Tajiri, O. Sakata, Effect of non-specifically adsorbed ions on the surface oxidation of Pt(111), ChemPhysChem 14 (11) (2013) 2426–2431. [23] Y. Cai, A.B. Anderson, Calculating reversible potentials for Pt-H and Pt-OH bond formation in basic solutions, J. Phys. Chem. B 109 (15) (2005) 7557–7563. [24] Q.X.Zha. The Dynamics of Electrode Processes, Science Press, Beijing, 1976 (238–254). [25] M. Teliska, V.S. Murthi, S. Mukerjee, D.E. Ramaker, Correlation of water activation, surface properties, and oxygen reduction reactivity of supported Pt–M/C bimetallic electrocatalysts using XAS, J. Electrochem. Soc. 152 (11) (2005) A2159. [26] O.I. González-Peña, T.W. Chapman, Y.M. Vong, R. Antaño-López, Study of adsorption of citrate on Pt by CV and EQCM, Electrochimica Acta 53 (17) (2008) 5549–5554. [27] Wahab.A, Mahiuddin.S. Isentropic compressibility and viscosity of aqueous and methanolic lithium chloride solutions. Revue Canadienne De Chimie, 2001, 80(80) 175–182. [28] S.B. Rempe, L.R. Pratt, The hydration number of Na+ in liquid water, Fluid Phase Equilibria 183-184 (2001) 121–132. [29] J.R. Rustad, A.R. Felmy, K.M. Rosso, E.J. Bylaska, Ab initio investigation of the structures of NaOH hydrates and their Na+and OH–coordination polyhedra, Am. Mineral. 88 (2–3) (2003) 436–449. [30] T.W. Allen, S. Kuyucak, S.H. Chung, Molecular dynamics study of the KcsA potassium channel, Biophys. J. 77 (5) (1999) 2502–2516. [31] Thanh, Biggs, Darr, Philosophical transactions of the royal society A: Mathematical, physical and engineering sciences: Preface, Philos. Trans. Royal Soc. Math. Phys. Eng. Sci. 368 (1927) (2010) 4227. [32] D. Strmcnik, D.F. van der Vliet, K.C. Chang, V. Komanicky, K. Kodama, H. You, V.R. Stamenkovic, N.M. Marković, Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions, J. Phys. Chem. Lett. 2 (21) (2011) 2733–2736. [33] P.P. Lopes, D. Strmcnik, J.S. Jirkovsky, J.G. Connell, V. Stamenkovic, N. Markovic, Double layer effects in electrocatalysis: The oxygen reduction reaction and ethanol oxidation reaction on Au(1 1 1), Pt(1 1 1) and Ir(1 1 1) in alkaline media containing Na and Li cations, Catal. Today 262 (2016) 41–47. [34] M. Nakamura, Y. Nakajima, N. Hoshi, H. Tajiri, O. Sakata, Effect of non-specifically adsorbed ions on the surface oxidation of Pt(111), Chemphyschem 14 (11) (2013) 2426–2431. [35] H. Pöpke, E. Mutoro, B. Luerßen, J. Janek, Oxygen reduction and oxidation at epitaxial model-type Pt(O2)/YSZ electrodes - On the role of PtOx formation on activation, passivation, and charge transfer, Catal. Today 202 (2013) 12–19. |