[1] G. Han, Y.H. Jin, R.A. Burgess, N.E. Dickenson, X.M. Cao, Y. Sun, Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets, J. Am. Chem. Soc. 139 (44) (2017) 15584–15587. https://pubmed.ncbi.nlm.nih.gov/29020768/ [2] S. Xu, P. Zhou, Z.H. Zhang, C.J. Yang, B.G. Zhang, K.J. Deng, S. Bottle, H.Y. Zhu, Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid using O2 and a photocatalyst of co-thioporphyrazine bonded to g-C3N4, J. Am. Chem. Soc. 139 (41) (2017) 14775–14782. https://doi.org/10.1021/jacs.7b08861 [3] S.G. Meng, H.H. Wu, Y.J. Cui, X.Z. Zheng, H. Wang, S.F. Chen, Y.X. Wang, X.L. Fu, One-step synthesis of 2D/2D-3D NiS/Zn3In2S6 hierarchical structure toward solar-to-chemical energy transformation of biomass-relevant alcohols, Appl. Catal. B Environ. 266 (2020) 118617. http://dx.doi.org/10.1016/j.apcatb.2020.118617 [4] M. Zhang, Z. Li, X. Xin, J.H. Zhang, Y.Q. Feng, H.J. Lv, Selective valorization of 5-hydroxymethylfurfural to 2, 5-diformylfuran using atmospheric O2 and MAPbBr3 perovskite under visible light, ACS Catal. 10 (24) (2020) 14793–14800. https://doi.org/10.1021/acscatal.0c04330 [5] W.Y. Liang, R. Zhu, X.L. Li, J. Deng, Y. Fu, Heterogeneous photocatalyzed acceptorless dehydrogenation of 5-hydroxymethylfurfural upon visible-light illumination, Green Chem. 23 (17) (2021) 6604–6613. https://doi.org/10.1039/d1gc01286j [6] H.C. Zhou, J.L. Song, Q.L. Meng, Z.H. He, Z.W. Jiang, B.W. Zhou, H.Z. Liu, B.X. Han, Cooperative catalysis of Pt/C and acid resin for the production of 2, 5-dimethyltetrahydrofuran from biomass derived 2, 5-hexanedione under mild conditions, Green Chem. 18 (1) (2016) 220–225. https://doi.org/10.1039/c5gc01741f [7] X.Y. Wan, C.M. Zhou, J.S. Chen, W.P. Deng, Q.H. Zhang, Y.H. Yang, Y. Wang, Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2, 5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles, ACS Catal. 4 (7) (2014) 2175–2185. http://dx.doi.org/10.1021/cs5003096 [8] D. Bonincontro, A. Lolli, A. Villa, L. Prati, N. Dimitratos, G.M. Veith, L.E. Chinchilla, G.A. Botton, F. Cavani, S. Albonetti, AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditions, Green Chem. 21 (15) (2019) 4090–4099. https://doi.org/10.1039/c9gc01283d [9] M.P.J. van Deurzen, F. van Rantwijk, R.A. Sheldon, Chloroperoxidase-catalyzed oxidation of 5-hydroxymethylfurfural, J. Carbohydr. Chem. 16 (3) (1997) 299–309. http://dx.doi.org/10.1080/07328309708006531 [10] A.S. Amarasekara, D. Green, E. McMillan, Efficient oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran using Mn(III)-salen catalysts, Catal. Commun. 9 (2) (2008) 286–288. http://dx.doi.org/10.1016/j.catcom.2007.06.021 [11] M. Zhang, Z.H. Yu, J. Xiong, R. Zhang, X.Z. Liu, X.B. Lu, One-step hydrothermal synthesis of CdxInyS(x+1.5y) for photocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran under ambient conditions, Appl. Catal. B Environ. 300 (2022) 120738. http://dx.doi.org/10.1016/j.apcatb.2021.120738 [12] L. Hu, A.Y. He, X.Y. Liu, J. Xia, J.X. Xu, S.Y. Zhou, J.M. Xu, Biocatalytic transformation of 5-hydroxymethylfurfural into high-value derivatives: Recent advances and future aspects, ACS Sustain. Chem. Eng. 6 (12) (2018) 15915–15935. http://dx.doi.org/10.1021/acssuschemeng.8b04356 [13] L. Hu, J.X. Xu, S.Y. Zhou, A.Y. He, X. Tang, L. Lin, J.M. Xu, Y.J. Zhao, Catalytic advances in the production and application of biomass-derived 2, 5-dihydroxymethylfuran, ACS Catal. 8 (4) (2018) 2959–2980. https://doi.org/10.1021/acscatal.7b03530 [14] D.Y. Zhao, T. Su, Y.T. Wang, R.S. Varma, C. Len, Recent advances in catalytic oxidation of 5-hydroxymethylfurfural, Mol. Catal. 495 (2020) 111133. http://dx.doi.org/10.1016/j.mcat.2020.111133 [15] S. Yurdakal, B.S. Tek, O. Alagöz, V. Augugliaro, V. Loddo, G. Palmisano, L. Palmisano, Photocatalytic selective oxidation of 5-(hydroxymethyl)-2-furaldehyde to 2, 5-furandicarbaldehyde in water by using anatase, rutile, and brookite TiO2 nanoparticles, ACS Sustainable Chem. Eng. 1 (5) (2013) 456–461. https://doi.org/10.1021/sc300142a [16] C.C. Li, Y. Na, Recent advances in photocatalytic oxidation of 5-hydroxymethylfurfural, ChemPhotoChem 5 (6) (2021) 502–511. http://dx.doi.org/10.1002/cptc.202000261 [17] X. Wu, N. Luo, S. Xie, H. Zhang, Q. Zhang, F. Wang, Y. Wang, Photocatalytic transformations of lignocellulosic biomass into chemicals, Chem. Soc. Rev. 49 (2020) 6198-6223. [18] I. Krivtsov, E.I. García-López, G. Marcì, L. Palmisano, Z. Amghouz, J.R. García, S. Ordóñez, E. Díaz, Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2, 5-furandicarboxyaldehyde in aqueous suspension of g-C3N4, Appl. Catal. B Environ. 204 (2017) 430–439. http://dx.doi.org/10.1016/j.apcatb.2016.11.049 [19] A. Kumar, R. Srivastava, Rose-like Bi2WO6 nanostructure for visible-light-assisted oxidation of lignocellulose-derived 5-hydroxymethylfurfural and vanillyl alcohol, ACS Appl. Nano Mater. 4 (9) (2021) 9080–9093. https://doi.org/10.1021/acsanm.1c01679 [20] H.L. Zhang, Z.Y. Feng, Y.K. Zhu, Y. Wu, T.H. Wu, Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran on WO3/g-C3N4 composite under irradiation of visible light, J. Photochem. Photobiol. A Chem. 371 (2019) 1–9. http://dx.doi.org/10.1016/j.jphotochem.2018.10.044 [21] I. Krivtsov, M. Ilkaeva, E. Salas-Colera, Z. Amghouz, J.R. García, E. Díaz, S. Ordóñez, S. Villar-Rodil, Consequences of nitrogen doping and oxygen enrichment on titanium local order and photocatalytic performance of TiO2 anatase, J. Phys. Chem. C 121 (2017) 6770–6780. [22] S.X. Yu, Y.H. Zhang, F. Dong, M. Li, T.R. Zhang, H.W. Huang, Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance, Appl. Catal. B Environ. 226 (2018) 441–450. http://dx.doi.org/10.1016/j.apcatb.2017.12.074 [23] M. Ilkaeva, I. Krivtsov, E.I. García-López, G. Marcì, O. Khainakova, J.R. García, L. Palmisano, E. Díaz, S. Ordóñez, Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct, J. Catal. 359 (2018) 212–222. http://dx.doi.org/10.1016/j.jcat.2018.01.012 [24] D. Li, F.F. Shi, D.L. Jiang, M. Chen, W.D. Shi, CdIn2S4/g-C3N4 heterojunction photocatalysts: Enhanced photocatalytic performance and charge transfer mechanism, RSC Adv. 7 (1) (2017) 231–237. https://doi.org/10.1039/c6ra24809h [25] B.W. Zhou, J.L. Song, Z.R. Zhang, Z.W. Jiang, P. Zhang, B.X. Han, Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2, Green Chem. 19 (4) (2017) 1075–1081. https://doi.org/10.1039/c6gc03022j [26] B. Ma, Y.Y. Wang, X.N. Guo, X.L. Tong, C. Liu, Y.W. Wang, X.Y. Guo, Photocatalytic synthesis of 2, 5-diformylfuran from 5-hydroxymethyfurfural or fructose over bimetallic Au-Ru nanoparticles supported on reduced graphene oxides, Appl. Catal. A Gen. 552 (2018) 70–76. http://dx.doi.org/10.1016/j.apcata.2018.01.002 [27] Y.K. Zhu, Y. Zhang, L.L. Cheng, M. Ismael, Z.Y. Feng, Y. Wu, Novel application of g-C3N4/NaNbO3 composite for photocatalytic selective oxidation of biomass-derived HMF to FFCA under visible light irradiation, Adv. Powder Technol. 31 (3) (2020) 1148–1159. http://dx.doi.org/10.1016/j.apt.2019.12.040 [28] C.Y. Pei, Y.G. Chen, L. Wang, W. Chen, G.B. Huang, Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation, Appl. Surf. Sci. 535 (2021) 147682. http://dx.doi.org/10.1016/j.apsusc.2020.147682 [29] B. Zhang, H.X. Shi, X.Y. Hu, Y.S. Wang, E.Z. Liu, J. Fan, A novel S-scheme MoS2/CdIn2S4 flower-like heterojunctions with enhanced photocatalytic degradation and H2 evolution activity, J. Phys. D: Appl. Phys. 53 (20) (2020) 205101. https://doi.org/10.1088/1361-6463/ab7563 [30] H. Liu, Z. Zhang, J.C. Meng, J. Zhang, Novel visible-light-driven CdIn2S4/mesoporous g-C3N4 hybrids for efficient photocatalytic reduction of CO2 to methanol, Mol. Catal. 430 (2017) 9–19. http://dx.doi.org/10.1016/j.molcata.2016.12.006 [31] C. Xue, H. An, X.Q. Yan, J.L. Li, B.L. Yang, J.J. Wei, G.D. Yang, Spatial charge separation and transfer in ultrathin CdIn2S4/rGO nanosheet arrays decorated by ZnS quantum dots for efficient visible-light-driven hydrogen evolution, Nano Energy 39 (2017) 513–523. http://dx.doi.org/10.1016/j.nanoen.2017.07.030 [32] P. Xiao, D.L. Jiang, L.X. Ju, J.J. Jing, M. Chen, Construction of RGO/CdIn2S4/g-C3N4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride, Appl. Surf. Sci. 433 (2018) 388–397. http://dx.doi.org/10.1016/j.apsusc.2017.10.028 [33] W. Chen, T. Huang, Y.X. Hua, T.Y. Liu, X.H. Liu, S.M. Chen, Hierarchical CdIn 2 S4 microspheres wrapped by mesoporous g-C 3 N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity, J. Hazard. Mater. 320 (2016) 529–538. https://pubmed.ncbi.nlm.nih.gov/27597153/ [34] Y.Z. Li, X.J. Wang, H.H. Huo, Z. Li, J.H. Shi, A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis, Colloids Surf. A Physicochem. Eng. Aspects 587 (2020) 124322. http://dx.doi.org/10.1016/j.colsurfa.2019.124322 [35] M.A. Mahadadalkar, S.W. Gosavi, B.B. Kale, Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel, J. Mater. Chem. A 6 (33) (2018) 16064–16073. https://doi.org/10.1039/c8ta03398f [36] M. Sun, X. Zhao, Q. Zeng, T. Yan, P.G. Ji, T.T. Wu, D. Wei, B. Du, Facile synthesis of hierarchical ZnIn2S4/CdIn2S4 microspheres with enhanced visible light driven photocatalytic activity, Appl. Surf. Sci. 407 (2017) 328–336. http://dx.doi.org/10.1016/j.apsusc.2017.02.181 [37] Y.G. Yu, G. Chen, G. Wang, Z.S. Lv, Visible-light-driven ZnIn2S4/CdIn2S4 composite photocatalyst with enhanced performance for photocatalytic H2 evolution, Int. J. Hydrog. Energy 38 (3) (2013) 1278–1285. http://dx.doi.org/10.1016/j.ijhydene.2012.11.020 [38] M.H. Yu, Q. Hu, X.Y. Gong, H. Yu, S. Wang, Z.Q. Li, Y.Y. Chen, S.J. Li, The construction of three-dimensional CdIn2S4/MoS2 composite materials for efficient hydrogen production, J. Alloys Compd. 892 (2022) 162168. http://dx.doi.org/10.1016/j.jallcom.2021.162168 [39] J. Wang, D.L. Chao, J.L. Liu, L.L. Li, L.F. Lai, J.Y. Lin, Z.X. Shen, Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage, Nano Energy 7 (2014) 151–160. http://dx.doi.org/10.1016/j.nanoen.2014.04.019 [40] T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites, Energy Environ. Sci. 7 (1) (2014) 209–231. https://doi.org/10.1039/c3ee42591f [41] J.L. Huang, D.M. Hou, Y.C. Zhou, W.J. Zhou, G.Q. Li, Z.H. Tang, L.G. Li, S.W. Chen, MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution, J. Mater. Chem. A 3 (45) (2015) 22886–22891. https://doi.org/10.1039/c5ta07234d [42] Y.T. Prabhu, R. Kumari, A. Gautam, B. Sreedhar, U. Pal, Highly oriented MoS2@CdIn2S4 nanostructures for efficient solar fuel generation, Nano Struct. Nano Objects 26 (2021) 100682. http://dx.doi.org/10.1016/j.nanoso.2021.100682 [43] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M.W. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2, Nano Lett. 11 (12) (2011) 5111–5116. https://pubmed.ncbi.nlm.nih.gov/22035145/ [44] C.L. Tan, M.Y. Qi, Z.R. Tang, Y.J. Xu, Cocatalyst decorated ZnIn2S4 composites for cooperative alcohol conversion and H2 evolution, Appl. Catal. B Environ. 298 (2021) 120541. http://dx.doi.org/10.1016/j.apcatb.2021.120541 [45] H.C. Shan, S.F. Li, Z. Yang, X.X. Zhang, Y. Zhuang, Q. Zhu, D. Cai, P.Y. Qin, J. Baeyens, Triazine-based N-rich porous covalent organic polymer for the effective detection and removal of Hg (II) from an aqueous solution, Chem. Eng. J. 426 (2021) 130757. http://dx.doi.org/10.1016/j.cej.2021.130757 [46] Y. Zhuang, H.C. Shan, Z.P. Zhang, S.F. Li, Q. Zhu, Z.H. Si, S. Yang, Z. Yang, D. Cai, P.Y. Qin, Triazine-based covalent organic polymer as stable luminescent probe for highly selective detection of 2, 4, 6-trinitrophenol, Dyes Pigments 192 (2021) 109421. http://dx.doi.org/10.1016/j.dyepig.2021.109421 [47] X.X. Wang, S.G. Meng, S.J. Zhang, X.Z. Zheng, S.F. Chen, 2D/2D MXene/g-C3N4 for photocatalytic selective oxidation of 5-hydroxymethylfurfural into 2, 5-formylfuran, Catal. Commun. 147 (2020) 106152. http://dx.doi.org/10.1016/j.catcom.2020.106152 [48] D.A. Giannakoudakis, V. Nair, A. Khan, E.A. Deliyanni, J.C. Colmenares, K.S. Triantafyllidis, Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese (IV) oxide nanorods, Appl. Catal. B Environ. 256 (2019) 117803. http://dx.doi.org/10.1016/j.apcatb.2019.117803 [49] S.H. Dong, M.Z. Chen, J.R. Zhang, J.Z. Chen, Y.S. Xu, Visible-light-induced hydrogenation of biomass-based aldehydes by graphitic carbon nitride supported metal catalysts, Green Energy Environ. 6 (5) (2021) 715–724. http://dx.doi.org/10.1016/j.gee.2020.07.004 [50] Y. Wang, X. Kong, M. Jiang, F. Zhang, X. Lei, A Z-scheme ZnIn2S4/Nb2O5 nanocomposite: Constructed and used as an efficient bifunctional photocatalyst for H2 evolution and oxidation of 5-hydroxymethylfurfural, Inorg. Chem. Front. 7 (2020) 437–446. [51] Y.Y. Zhao, X.H. Liang, H.X. Shi, Y.B. Wang, Y.K. Ren, E.Z. Liu, X. Zhang, J. Fan, X.Y. Hu, Photocatalytic activity enhanced by synergistic effects of nano-silver and ZnSe quantum dots co-loaded with bulk g-C3N4 for Ceftriaxone sodium degradation in aquatic environment, Chem. Eng. J. 353 (2018) 56–68. http://dx.doi.org/10.1016/j.cej.2018.07.109 [52] J.G. Yu, W.G. Wang, B. Cheng, B.L. Su, Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C 113 (16) (2009) 6743–6750. https://doi.org/10.1021/jp900136q [53] S.F. Chen, Y.F. Hu, S.G. Meng, X.L. Fu, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3, Appl. Catal. B Environ. 150-151 (2014) 564–573. https://doi.org/10.1016/j.apcatb.2013.12.053 [54] J. Cao, B.D. Luo, H.L. Lin, B.Y. Xu, S.F. Chen, Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties, Appl. Catal. B Environ. 111-112 (2012) 288–296. http://dx.doi.org/10.1016/j.apcatb.2011.10.010 [55] C. Ayed, W. Huang, G. Kizilsavas, K. Landfester, K.A.I. Zhang, Photocatalytic partial oxidation of 5-hydroxymethylfurfural (HMF) to 2, 5-diformylfuran (DFF) over a covalent triazine framework in water, ChemPhotoChem 4 (8) (2020) 571–576. https://doi.org/10.1002/cptc.202000070 [56] S.S. Yu, S.D. Zhang, K.N. Li, Q. Yang, M. Wang, D. Cai, T.W. Tan, B.Q. Chen, Furfuryl alcohol production with high selectivity by a novel visible-light driven biocatalysis process, ACS Sustainable Chem. Eng. 8 (42) (2020) 15980–15988. https://doi.org/10.1021/acssuschemeng.0c05978 [57] H.Q. Zhao, Q. Zhu, Y. Zhuang, P. Zhan, Y.O. Qi, W.Q. Ren, Z.H. Si, D. Cai, S.S. Yu, P.Y. Qin, Hierarchical ZnIn2S4 microspheres as photocatalyst for boosting the selective biohydrogenation of furfural into furfuryl alcohol under visible light irradiation, Green Chem. Eng. (2022)http://dx.doi.org/10.1016/j.gce.2022.01.004 [58] J.J. Xue, C.J. Huang, Y.Q. Zong, J.D. Gu, M.X. Wang, S.S. Ma, Fe (III)-grafted Bi 2 MoO 6 nanoplates for enhanced photocatalytic activities on tetracycline degradation and HMF oxidation, Appl. Organomet. Chem. 33 (11) (2019): https://doi.org/10.1002/aoc.5187. https://doi.org/10.1002/aoc.5187 [59] Y. Zhuang, Q. Zhu, G.Z. Li, Z.L. Wang, P. Zhan, C. Ren, Z.H. Si, S.F. Li, D. Cai, P.Y. Qin, Photocatalytic degradation of organic dyes using covalent triazine-based framework, Mater. Res. Bull. 146 (2022) 111619. http://dx.doi.org/10.1016/j.materresbull.2021.111619 [60] J.F. Zhang, Y.F. Hu, X.L. Jiang, S.F. Chen, S.G. Meng, X.L. Fu, Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity, J. Hazard. Mater. 280 (2014) 713–722. https://pubmed.ncbi.nlm.nih.gov/25232654/ [61] W.J. Li, D.Z. Li, Y.M. Lin, P.X. Wang, W. Chen, X.Z. Fu, Y. Shao, Evidence for the active species involved in the photodegradation process of methyl orange on TiO2, J. Phys. Chem. C 116 (5) (2012) 3552–3560. https://doi.org/10.1021/jp209661d [62] Y.M. Lin, D.Z. Li, J.H. Hu, G.C. Xiao, J.X. Wang, W.J. Li, X.Z. Fu, Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite, J. Phys. Chem. C 116 (9) (2012) 5764–5772. http://dx.doi.org/10.1021/jp211222w |