[1] V. Zelenak, M. Skrinska, F.R. Siperstein, A. Patti, Phase evolution during one-pot synthesis of amine modified mesoporous silica materials:Preparation, properties, carbon dioxide adsorption, Appl. Surf. Sci. 476(2019) 886-896. [2] M.T. Janicke, C.C. Landry, S.C. Christiansen, D. Kumar, G.D. Stucky, B.F. Chmelka, Aluminum incorporation and interfacial structures in MCM-41 mesoporous molecular sieves, J. Am. Chem. Soc. 120(1998) 6940-6951. [3] X. Wang, G. Zhou, Z. Chen, Q. Li, H. Zhou, C. Xu, Enhancing the vanadium dispersion on V-MCM-41 by boron modification for efficient iso-butane dehydrogenation, Appl. Catal. A-Gen 555(2018) 171-177. [4] G. Du, S. Lim, Y. Yang, C. Wang, L. Pfefferle, G.L. Haller, Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde, Appl. Catal., A 302(2006) 48-61. [5] S.C. Laha, R. Kumar, Promoter-induced synthesis of MCM-41 type mesoporous materials including Ti-and V-MCM-41 and their catalytic properties in oxidation reactions, Microporous Mesoporous Mater. 53(2002) 163-177. [6] M.L. Peña, V. Fornés, F. Rey, M.I. Vazquez, J.M. Lopez Nieto, V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase, Appl. Catal. A Gen. 209(2001) 155-164. [7] M.D. Jones, M.J. Duer, S. Hermans, Y.Z. Khimyak, B.F.G. Johnson, J.M. Thomas, Solidstate NMR studies of MCM-41 supported with a highly catalytically active cluster, Angew. Chem. Int. Ed. 41(2002) 4726-4729. [8] Q.H. Zhang, Y. Wang, Y. Ohishi, T. Shishido, K. Takehira, Vanadium-containing MCM-41 for partial oxidation of lower alkanes, J. Catal. 202(2001) 308-318. [9] A.L. Cánepa, V.R. Elías, V.M. Vaschetti, E.V. Sabre, G.A. Eimer, S.G. Casuscelli, Selective oxidation of benzyl alcohol through eco-friendly processes using mesoporous VMCM-41, Fe-MCM-41 and Co-MCM-41 materials, Appl. Catal. A-Gen 545(2017) 72-78. [10] M. Salavati-Niasari, Zeolite-encapsulated nickel (II) complexes with 14-membered hexaaza macrocycle:synthesis and characterization, Inorg. Chem. Commun. 7(2004) 963-966. [11] Q. Zhang, W. Yang, X. Wang, Y. Wang, T. Shishido, K. Takehira, Coordination structures of vanadium and iron in MCM-41 and the catalytic properties in partial oxidation of methane, Microporous Mesoporous Mater. 77(2005) 223-234. [12] M. Salavati-Niasari, Zeolite-encapsulation copper(II) complexes with 14-membered hexaaza macrocycles:synthesis, characterization and catalytic activity, J. Mol. Catal. A Chem. 217(2004) 87-92. [13] M. Salavati-Niasari, Synthesis and characterization of host (nanodimensional pores of zeolite-Y)-guest[unsaturated 16-membered Octaaza-macrocycle manganese (II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials, Chem. Lett. 34(2005) 1444-1445. [14] M. Salavati-Niasari, Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes, Inorg. Chem. Commun. 8(2005) 174-177. [15] M. Salavati-Niasari, Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil) acetylacetonato manganese(III)]) nanocomposite materials (HGNM), Microporous Mesoporous Mater. 95(2006) 248-256. [16] M. Salavati-Niasari, Host (nanocage of zeolite-Y)/guest (manganese(II), cobalt(II), nickel(II) and copper(II) complexes of 12-membered macrocyclic Schiff-base ligand derived from thiosemicarbazide and glyoxal) nanocomposite materials:Synthesis, characterization and catalytic oxidation of cyclohexene, J. Mol. Catal. A Chem. 283(2008) 120-128. [17] D.P. Sahoo, D. Rath, B. Nanda, K.M. Parida, Transition metal/metal oxide modified MCM-41 for pollutant degradation and hydrogen energy production:A review, RSC Adv. 5(2015) 83707-83724. [18] A. Corma, M.T. Navarro, J.P. Pariente, Synthesis of an ultralarge pore titanium silicate lsomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, Chem. Commun. (1994) 147-148. [19] N. Ulagappan, C.N.R. Rao, Synthesis and characterization of the mesoporous chromium silicates, Cr-MCM-41, Chem. Commun. (1996) 1047-1048. [20] Y. Yang, S. Lim, G. Du, Y. Chen, D. Ciuparu, G.L. Haller, Synthesis and characterization of highly ordered Ni-MCM-41 mesoporous molecular sieves, J. Phys. Chem. B 109(2005) 13237-13246. [21] K. Wu, B. Li, C. Han, J. Liu, Synthesis, characterization of MCM-41 with high vanadium content in the framework and its catalytic performance on selective oxidation of cyclohexane, Appl. Catal., A 479(2014) 70-75. [22] M. Salavati-Niasari, M. Shakouri-Arani, F. Davar, Flexible ligand synthesis, characterization and catalytic oxidation of cyclohexane with host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of tetrahydro-salophen) nanocomposite materials, Microporous Mesoporous Mater. 116(2008) 77-85. [23] S.R. Ede, A. Ramadoss, U. Nithiyanantham, S. Anantharaj, S. Kundu, Bio-molecule assisted aggregation of ZnWO4 nanoparticles (NPs) into chain-like assemblies:Material for high performance supercapacitor and as catalyst for benzyl alcohol oxidation, Inorg. Chem. 54(2015) 3851-3863. [24] M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered Decaaza macrocycle copper(II) complexes, Chem. Lett. 34(2005) 244-245. [25] M. Salavati-Niasari, F. Davar, Host (nanodimensional pores of zeolite Y)-guest (3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane,[Ni(R2Bzo2 [14] aneN6)]2+) nanocomposite materials:Synthesis, characterization and catalytic oxidation of cyclohexene, Inorg. Chem. Commun. 9(2006) 263-268. [26] M. Salavati-Niasari, A. Sobhani, Ship-in-a-bottle synthesis, characterization and catalytic oxidation of cyclohexane by host (nanopores of zeolite-Y)/guest (Mn(II), Co (II), Ni(II) and Cu(II) complexes of bis(salicyaldehyde)oxaloyldihydrazone) nanocomposite materials, J. Mol. Catal. A Chem. 285(2008) 58-67. [27] M. Salavati-Niasari, M. Dadkhah, F. Davar, Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, trisacetylacetonato zirconium(IV) nitrate as new precursor complex, Inorg. Chim. Acta 362(2009) 3969-3974. [28] M. Salavati-Niasari, Nanoscale microreactor-encapsulation 14-membered nickel(II) hexamethyl tetraaza:Synthesis, characterization and catalytic activity, J. Mol. Catal. A Chem. 229(2005) 159-164. [29] M. Salavati-Niasari, P. Salemi, F. Davar, Oxidation of cyclohexene with tertbutylhydroperoxide and hydrogen peroxide catalysted by Cu(II), Ni(II), Co(II) and Mn(II) complexes of N,N'-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine, supported on alumina, J. Mol. Catal. A Chem. 238(2005) 215-222. [30] M. Salavati-Niasari, Host (nanocavity of zeolite-Y)-guest (tetraaza [14] annulene copper(II) complexes) nanocomposite materials:Synthesis, characterization and liquid phase oxidation of benzyl alcohol, J. Mol. Catal. A Chem. 245(2006) 192-199. [31] M. Salavati-Niasari, Z. Salimi, M. Bazarganipour, F. Davar, Synthesis, characterization and catalytic oxidation of cyclohexane using a novel host (zeolite-Y)/guest (binuclear transition metal complexes) nanocomposite materials, Inorg. Chim. Acta 362(2009) 3715-3724. [32] S. Zinatloo-Ajabshir, M. Salavati-Niasari, M. Hamadanian, Praseodymium oxide nanostructures:Novel solvent-less preparation, characterization and investigation of their optical and photocatalytic properties, RSC Adv. 5(2015) 33792-33800. [33] M. Ghiyasiyan-Arani, M. Salavati-Niasari, Effect of Li2CoMn3O8 nanostructures synthesized by a combustion method on Montmorillonite K10 as a potential hydrogen storage material, J. Phys. Chem. C 122(2018) 16498-16509. [34] J. Zhao, Y. Zhang, S. Zhang, Q. Wang, M. Chen, T. Hu, C. Meng, Synthesis and characterization of Mn-Silicalite-1 by the hydrothermal conversion of Mn-magadiite under the neutral condition and its catalytic performance on selective oxidation of styrene, Microporous Mesoporous Mater. 268(2018) 16-24. [35] G. Ming-Lin, L. Hui-Zhen, Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over tetra-alkylpyridinium octamolybdate catalysts, Green Chem. 9(2007) 421-423. [36] B. Grunberg, T. Emmler, E. Gedat, I. Shenderovich, G.H. Findenegg, H.H. Limbach, G. Buntkowsky, Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by H-1 solid-state NMR, Chem. Eur. J. 10(2004) 5689-5696. [37] G. Feng, P. Cheng, W. Yan, M. Boronat, X. Li, J.-H. Su, J. Wang, Y. Li, A. Corma, R. Xu, J. Yu, Accelerated crystallization of zeolites via hydroxyl free radicals, Science 351(2016) 1188-1191. [38] A.I. Lupulescu, J.D. Rimer, In situ imaging of Silicalite-1 surface growth reveals the mechanism of crystallization, Science 344(2014) 729. [39] C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time, Chem. Rev. 103(2003) 663-701. [40] J. Zhao, Y. Zhang, F. Tian, Y. Zuo, Y. Mu, C. Meng, High pH promoting the synthesis of V-Silicalite-1 with high vanadium content in the framework and its catalytic performance in selective oxidation of styrene, Dalton Trans. 47(2018) 11375-11385. [41] Y. Meng, H.C. Genuino, C.-H. Kuo, H. Huang, S.-Y. Chen, L. Zhang, A. Rossi, S.L. Suib, One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, MnZSM-5, characterization, and catalytic oxidation of hydrocarbons, J. Am. Chem. Soc. 135(2013) 8594-8605. [42] X. Wang, G. Zhou, Z. Chen, W. Jiang, H. Zhou, In-situ synthesis and characterization of V-MCM-41 for oxidative dehydrogenation of n-butane, Microporous Mesoporous Mater. 223(2016) 261-267. [43] G. Feng, J. Wang, M. Boronat, Y. Li, J.-H. Su, J. Huang, Y. Ma, J. Yu, Radical-facilitated green synthesis of highly ordered Mesoporous silica materials, J. Am. Chem. Soc. 140(2018) 4770-4773. [44] J. Xu, W. Chu, S. Luo, Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability, J. Mol. Catal. A Chem. 256(2006) 48-56. [45] A.B.J. Arnold, J.P.M. Niederer, T.E.W. Nießen, The influence of synthesis parameters on the vanadium content and pore size of[V]-MCM-41 materials, Microporous Mesoporous Mater. 28(1999) 353-360. [46] K.J. Chao, C.N. Wu, H. Chang, Incorporation of vanadium in Mesoporous MCM-41 and microporous AFI zeolites, J. Phys. Chem. B 101(1997) 6341-6349. [47] S. Shylesh, A.P. Singh, Synthesis, characterization, and catalytic activity of vanadiumincorporated,-grafted, and -immobilized mesoporous MCM-41 in the oxidation, of aromatics, J. Catal. 228(2004) 333-346. [48] S. Shylesh, A. Singh, Vanadium-containing ordered mesoporous silicates:Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41? J. Catal. 233(2005) 359-371. [49] B. Singh, A.K. Sinha, Synthesis of hierarchical mesoporous vanadium silicate-1 zeolite catalysts for styrene epoxidation with organic hydroperoxide, J. Mater. Chem. A 2(2014) 1930-1939. [50] P.K. Vanama, A. Kumar, S.R. Ginjupalli, V.R.C. Komandur, Vapor-phase hydrogenolysis of glycerol over nanostructured Ru/MCM-41 catalysts, Catal. Today 250(2015) 226-238. [51] E.P. Reddy, L. Davydov, P.G. Smirniotis, Characterization of Titania loaded V-, Fe-, and Cr-incorporated MCM-41 by XRD, TPR, UV-Vis, Raman, and XPS techniques, J. Phys. Chem. B 106(2002) 3394-3401. [52] Q. Wang, Y. Zhang, H. Jiang, X. Li, Y. Cheng, C. Meng, Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate:A potential electrode material for flexible all solid-state asymmetric supercapacitor, Chem. Eng. J. 362(2019) 818-829. [53] Y. Zhang, H. Jiang, Q. Wang, C. Meng, In-situ hydrothermal growth of Zn4Si2O7(OH)2·H2O anchored on 3D N, S-enriched carbon derived from plant biomass for flexible solid-state asymmetrical supercapacitors, Chem. Eng. J. 352(2018) 519-529. [54] Y. Zhang, C. Wang, H. Jiang, Q. Wang, J. Zheng, C. Meng, Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid Supercapacitors, Chem. Eng. J. 375(2019) 121938. [55] T.H. Abreu, C.I. Meyer, C. Padro, L. Martins, Acidic V-MCM-41 catalysts for the liquidphase ketalization of glycerol with acetone, Microporous Mesoporous Mater. 273(2019) 219-225. [56] Y. Zhang, H. Jiang, L. Xu, Z. Gao, C. Meng, Ammonium vanadium oxide[(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries, ACS Appl. Energy Mater. 2(2019) 7861-7869. [57] Y. Zhang, M. Chen, T. Hu, C. Meng, 3D interlaced networks of VO(OH)2 Nanoflakes wrapped with Graphene oxide Nanosheets as electrodes for energy storage devices, ACS Appl. Nano Mater. 2(2019) 2934-2945. [58] H. Jiang, Y. Zhang, L. Xu, Z. Gao, J. Zheng, Q. Wang, C. Meng, J. Wang, Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries, Chem. Eng. J. 382(2020) 122844. [59] J. Zheng, Y. Zhang, Q. Wang, H. Jiang, Y. Liu, T. Lv, C. Meng, Hydrothermal encapsulation of VO2(a) nanorods in amorphous carbon by carbonization of glucose for energy storage devices, Dalton Trans. 47(2018) 452-464. [60] R. Gallay, J.J. Vanderklink, J. Moser, Electron-paramagnetic-res study of vanadium (4+) in the ANATASE and rutile phases of TiO2, Phys. Rev. B 34(1986) 3060-3068. [61] A. Dinse, A. Ozarowski, C. Hess, R. Schomaecker, K.-P. Dinse, Potential of high-frequency EPR for investigation of supported vanadium oxide catalysts, J. Phys. Chem. C 112(2008) 17664-17671. [62] S. Chien, J. Ho, S. Mon, Hydrothermal synthesis and characterization of the vanadium-containing zeolite beta, Zeolites 18(1997) 182-187. [63] S.P.G. Centi, F. Trifirb, Physicochemical characterization of V-Silicaiite, J. Phys. Chem. 96(1992) 2617-2629. [64] R. Baran, Y. Millot, T. Onfroy, F. Averseng, J.-M. Krafft, S. Dzwigaj, Influence of the preparation procedure on the nature and environment of vanadium in VSiBEA zeolite:XRD, DR UV-vis, NMR, EPR and TPR studies, Microporous Mesoporous Mater. 161(2012) 179-186. [65] B. Guo, L. Zhu, X. Hu, Q. Zhang, D. Tong, G. Li, C. Hu, Nature of vanadium species on vanadium silicalite-1 zeolite and their stability in hydroxylation reaction of benzene to phenol, Catal. Sci. Technol. 1(2011) 1060-1067. [66] B. Solsona, T. Blasco, J.M. López Nieto, M.L. Peña, F. Rey, A. Vidal-Moya, Vanadium oxide supported on Mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes, J. Catal. 203(2001) 443-452. [67] C.N. Wu, T.S. Tsai, C.N. Liao, K.J. Chao, Controlling pore size distributions of MCM-41 by direct synthesis, Microporous Mater. 7(1996) 173-185. [68] C.W. Lee, W.J. Lee, Y.K. Park, S.-E. Park, Catalytic hydroxylation of benzene over vanadium-containing molecular sieves, Catal. Today 61(2000) 137-141. [69] B. Zhan, M.A. White, T. Sham, J.A. Pincock, R.J. Doucet, K.V.R. Rao, K.N. Robertson, T.S. Cameron, Zeolite-confined nano-RuO2:A green, selective, and efficient catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc. 125(2003) 2195-2199. [70] A. Lou, L. Zhang, C. Zhang, Y. Liu, S. Liu, Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over alkali-treated ZSM-5 zeolite catalysts, J. Mol. Catal. A Chem. 306(2009) 123-129. [71] M. Zahmakıran, S. Özzkar, The preparation and characterization of gold (0) nanoclusters stabilized by zeolite framework:Highly active, selective and reusable catalyst in aerobic oxidation of benzyl alcohol, Mater. Chem. Phys. 121(2010) 359-363. [72] G. Wu, Y. Gao, F. Ma, B. Zheng, L. Liu, H. Sun, W. Wu, Catalytic oxidation of benzyl alcohol over manganese oxide supported on MCM-41 zeolite, Chem. Eng. J. 271(2015) 14-22. |