中国化学工程学报 ›› 2020, Vol. 28 ›› Issue (9): 2425-2437.DOI: 10.1016/j.cjche.2020.05.016
• Energy, Resources and Environmental Technology • 上一篇 下一篇
Muhammad A. Imran1, Tiantian Li1, Xuemei Wu1, Xiaoming Yan1, Abdul-Sammed Khan2, Gaohong He1
收稿日期:
2019-10-06
修回日期:
2020-05-12
出版日期:
2020-09-28
发布日期:
2020-10-21
通讯作者:
Gaohong He
基金资助:
Muhammad A. Imran1, Tiantian Li1, Xuemei Wu1, Xiaoming Yan1, Abdul-Sammed Khan2, Gaohong He1
Received:
2019-10-06
Revised:
2020-05-12
Online:
2020-09-28
Published:
2020-10-21
Contact:
Gaohong He
Supported by:
摘要: The novel sulfonated polybenzimidazole (sPBI)/amine functionalized titanium dioxide (AFT) composite membrane is devised and studied for its capability of the application of high temperature proton exchange membrane fuel cells (HT-PEMFCs), unlike the prior low temperature AFT endeavors. The high temperature compatibility was actualized because of the filling of free volumes in the rigid aromatic matrix of the composite with AFT nanoparticles which inhibited segmental motions of the chains and improved its thermal stability. Besides, amine functionalization of TiO2 enhanced their dispersion character in the sPBI matrix and shortened the interparticle separation gap which finally improved the proton transfer after establishing interconnected pathways and breeding more phosphoric acid (PA) doping. In addition, the appeared assembled clusters of AFT flourished a superior mechanical stability. Thus, the optimized sPBI/AFT (10 wt%) showed 65.3 MPa tensile strength; 0.084 S·cm-1 proton conductivity (at 160 °C; in anhydrous conditions), 28.6% water uptake and PA doping level of 23 mol per sPBI repeat unit. The maximum power density peak for sPBI/AFT-10 met the figure of 0.42 W·cm-2 at 160 °C (in dry conditions) under atmospheric pressure with 1.5 and 2.5 stoichiometric flow rates of H2/air. These results affirmed the probable fitting of sPBI/AFT composite for HT-PEMFC applications.
Muhammad A. Imran, Tiantian Li, Xuemei Wu, Xiaoming Yan, Abdul-Sammed Khan, Gaohong He. Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage[J]. 中国化学工程学报, 2020, 28(9): 2425-2437.
Muhammad A. Imran, Tiantian Li, Xuemei Wu, Xiaoming Yan, Abdul-Sammed Khan, Gaohong He. Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2425-2437.
[1] H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B.G. Pollet, Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell:evaluation of polymer binders in catalyst layer, Int. J. Hydrog. Energy 38(26) (2013) 11370-11378. [2] H. Chen, S. Wang, J.S. Li, F.X. Liu, X. Tian, X. Wang, T.J. Mao, J.M. Xu, Z. Wang, Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications, J. Taiwan Inst. Chem. Eng. 95(2018) 185-194. [3] A. Chandan, M. Hattenberger, A. El-kharouf, S. Du, A. Dhir, V. Self, B.G. Pollet, A. Ingram, W. Bujalski, High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-a review, J. Power Sources 231(2013) 264-278. [4] Q.F. Li, J.O. Jensen, R.F. Savinell, J.B. Niels, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci. 34(5) (2009) 449-477. [5] I. Profatilova, P.A. Jacques, S. Escribano, Evaluation of parameters accelerating the aging of PEMFCs operating under reformate containing carbon monoxide, J. Electrochem. Soc. 165(6) (2018) F3251-F3260. [6] Y.Y. Shao, G.P. Yin, Z.B. Wang, Y.Z. Gao, Proton exchange membrane fuel cell from low temperature to high temperature:Material challenges, J. Power Sources 167(2) (2007) 235-242. [7] T. Higashihara, K. Matsumoto, M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells, Polymer 50(23) (2009) 5341-5357. [8] R.E. Rosli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, T. Husaini, M.I. Rosli, E.H. Majlan, M.A. Haque, A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Int. J. Hydrog. Energy 42(14) (2017) 9293-9314. [9] A. Kraytsberg, Y. Ein-Eli, Review of advanced materials for proton exchange membrane fuel cells, Energy Fuel 28(12) (2014) 7303-7330. [10] J. Miyake, M. Kusakabe, A. Tsutsumida, K. Miyatake, Remarkable reinforcement effect in sulfonated aromatic polymers as fuel cell membrane, ACS Applied Energy Materials 1(3) (2018) 1233-1238. [11] G. Alberti, R. Narducci, M. Sganappa, Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix, J. Power Sources 178(2) (2008) 575-583. [12] R.P. Pandey, A.K. Thakur, V.K. Shahi, Sulfonated polyimide/acid-functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties, ACS Appl. Mater. Interfaces 6(19) (2014) 16993-17002. [13] B.J. Yao, X.L. Yan, Y. Ding, Z.J. Lu, D.X. Dong, H. Ishida, M. Litt, L. Zhu, Synthesis of sulfonic acid-containing polybenzoxazine for proton exchange membrane in direct methanol fuel cells, Macromolecules 47(3) (2014) 1039-1045. [14] K. Divya, M.S. Sri Abirami Saraswathi, D. Rana, S. Alwarappan, A. Nagendran, Custom-made sulfonated poly (ether sulfone) nanocomposite proton exchange membranes using exfoliated molybdenum disulfide nanosheets for DMFC applications, Polymer 147(2018) 48-55. [15] Y.B. Cai, Z.Y. Yue, S.A. Xu, A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere, J. Appl. Polym. Sci. 134(25) (2017) 134. [16] N. Cao, C.F. Zhou, Y. Wang, H. Ju, D.Y. Tan, J. Li, Synthesis and characterization of sulfonated graphene oxide reinforced sulfonated poly(ether ether ketone) (SPEEK) composites for proton exchange membrane materials, Materials 11(4) (2018) 516. [17] L.Y. Li, B.C. Yu, C.M. Shih, S.J. Lue, Polybenzimidazole membranes for direct methanol fuel cell:acid-doped or alkali-doped? J. Power Sources 287(2015) 386-395. [18] H. Hou, M.L. Di Vona, P. Knauth, Building bridges:crosslinking of sulfonated aromatic polymers-a review, J. Membr. Sci. 423(2012) 113-127. [19] A.L. Gulledge, B. Gu, B.C. Benicewicz, A new sequence isomer of ABpolybenzimidazole for high-temperature PEM fuel cells, J. Polym. Sci. A Polym. Chem. 50(2) (2012) 306-313. [20] N.N. Krishnan, H.J. Lee, H.J. Kim, J.Y. Kim, I. Hwang, J.H. Jang, E.A. Cho, S.K. Kim, D. Henkensmeier, S.A. Hong, T.H. Lim, Sulfonated poly(ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications, Eur. Polym. J. 46(7) (2010) 1633-1641. [21] D.X. Zhang, J. Zou, Y.M. Zhang, M. Zhang, D.D. Dang, Research of Novel high-temperature proton exchange composite membrane, Applied Mechanics and Materials. Trans Tech Publ. 2(2014) 1677. [22] L. Wang, J.P. Ni, D. Liu, C.L. Gong, L. Wang, Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells, Int. J. Hydrog. Energy 43(34) (2018) 16694-16703. [23] P. Staiti, F. Lufrano, A.S. Aricò, E. Passalacqua, V. Antonucci, Sulfonated polybenzimidazole membranes-preparation and physico-chemical characterization, J. Membr. Sci. 188(1) (2001) 71-78. [24] J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Ionics 147(1-2) (2002) 189-194. [25] J.A. Asensio, E.M. Sánchez, P. Gómez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest, Chem. Soc. Rev. 39(8) (2010) 3210-3239. [26] N. Tan, G.Y. Xiao, D.Y. Yan, G.M. Sun, reparation and properties of polybenzimidazoles with sulfophenylsulfonyl pendant groups for proton exchange membranes, J. Membr. Sci. 353(1) (2010) 51-59. [27] G. Wang, G.Y. Xiao, D.Y. Yan, Synthesis and properties of soluble sulfonated polybenzimidazoles derived from asymmetric dicarboxylic acid monomers with sulfonate group as proton exchange membrane, J. Membr. Sci. 369(1) (2011) 388-396. [28] H.J. Xu, K.C. Chen, X.X. Guo, J.H. Fang, J. Yin, Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application, Polymer 48(19) (2007) 5556-5564. [29] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, PBI-based polymer membranes for high temperature fuel cells-preparation, characterization and fuel cell demonstration, Fuel Cells 4(3) (2004) 147-159. [30] P. Mustarelli, E. Quartarone, S. Grandi, A. Carollo, A. Magistris, Polybenzimidazolebased membranes as a real alternative to nafion for fuel cells operating at low temperature, Adv. Mater. 20(7) (2008) 1339-1343. [31] M.N.A. Mohd Norddin, A.F. Ismail, D. Rana, T. Matsuura, A. Mustafa, A. TabeMohammadi, Characterization and performance of proton exchange membranes for direct methanol fuel cell:blending of sulfonated poly (ether ether ketone) with charged surface modifying macromolecule, J. Membr. Sci. 323(2) (2008) 404-413. [32] L.J. Ghil, C.K. Kim, N.R. Park, H.W. Rhee, Characterization of sulfonated poly(ether ether ketone)/silane nanocomposite membrane for high temperature polymer electrolyte membrane fuel cells, J. Nanosci. Nanotechnol. 11(1) (2011) 331-334. [33] C.H. Lee, H.B. Park, C.H. Park, S.Y. Lee, J.Y. Kim, James E. Mc Grath, Y.M. Lee, Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion, J. Power Sources 195(5) (2010) 1325-1332. [34] M. Choi, C. Han, I.T. Kim, J.C. An, J.J. Lee, H.K. Lee, J. Shim, Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells, J. Nanosci. Nanotechnol. 11(1) (2011) 838-841. [35] J.B. Ballengee, P.N. Pintauro, Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats, J. Membr. Sci. 442(2013) 187-195. [36] W. Qian, Y.M. Shang, M. Fang, S.B. Wang, X.F. Xie, J.H. Wang, W.X. Wang, J.Y. Du, Y. W. Wang, Z.Q. Mao, Sulfonated polybenzimidazole/zirconium phosphate composite membranes for high temperature applications, Int. J. Hydrog. Energy 37(17) (2012) 12919-12924. [37] Y. Devrim, H. Devrim, I. Eroglu, Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrog. Energy 41(23) (2016) 10044-10052. [38] H. Ahmadizadegan, Effect of adding nanoclay (Cloisite-30B) on the proton conductivity of sulfonated polybenzimidazole, Nano Res. 2(1) (2017) 96-108. [39] V. Dusastre, Materials for Sustainable Energy:A Collection of Peer-reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 2011. [40] R. Kannan, B.A. Kakade, V.K. Pillai, Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes, Angew. Chem. Int. Ed. 47(14) (2008) 2653-2656. [41] H. Wu, Y. Cao, X.H. Shen, Z. Li, T.X. Zhong, Y. Jiang, Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly (ether ether ketone) hybrid membranes for direct methanol fuel cells, J. Membr. Sci. 463(2014) 134-144. [42] P. Salarizadeh, M. Javanbakht, S. Pourmahdian, Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO2 nanoparticles with proton hopping sites, RSC Adv. 7(14) (2017) 8303-8313. [43] S.S. Araya, F. Zhou, V. Liso, S.L. Sahlin, J.R. Vang, S. Thomas, X. Gao, C. Jeppesen, S.K. Kær, A comprehensive review of PBI-based high temperature PEM fuel cells, Int. J. Hydrog. Energy 41(46) (2016) 21310-21344. [44] M. Amjadi, S. Rowshanzamir, S.J. Peighambardoust, M.G. Hosseini, M.H. Eikani, Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells, Int. J. Hydrog. Energy 35(17) (2010) 9252-9260. [45] N.T.L.A. Thanh, Green, Functionalisation of nanoparticles for biomedical applications, Nano Today 5(3) (2010) 213-230. [46] Q.Y. Liu, W.F. Wang, Y.L. Wang, Z.M. Shan, M.S. Wang, J.K. Tang, Diversity of lanthanide (III)-organic extended frameworks with a 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid ligand:Syntheses, structures, and magnetic and luminescent properties, Inorg. Chem. 51(4) (2012) 2381-2392. [47] S.B. Qing, W. Huang, D.Y. Yan, Synthesis and characterization of thermally stable sulfonated polybenzimidazoles obtained from 3,3'-disulfonyl-4,4'-dicarboxyldiphenylsulfone, J. Polym. Sci. A Polym. Chem. 43(19) (2005) 4363-4372. [48] N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications, J. Am. Chem. Soc. 128(5) (2006) 1762-1769. [49] P.X. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, S. Kaliaguine, Sulfonated poly (aryl ether ketone) s containing the hexafluoroisopropylidene diphenyl moiety prepared by direct copolymerization, as proton exchange membranes for fuel cell application, Macromolecules 37(21) (2004) 7960-7967. [50] S. Maity, S. Singha, T. Jana, Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica, Polymer 66(2015) 76-85. [51] X. Qiu, H.Y. Hu Mitsuru Ueda, Y.Q. Sui, X. Zhang, L.J. Wang, Poly (2,5-benzimidazole)-grafted graphene oxide as an effective proton conductor for construction of nanocomposite proton exchange membrane, ACS Appl. Mater. Interfaces 9(38) (2017) 33049-33058. [52] S.B. Qing, W. Huang, D.Y. Yan, Synthesis and properties of soluble sulfonated polybenzimidazoles, React. Funct. Polym. 66(2) (2006) 219-227. [53] A.M. Cevallos, J. Herrera, I. López-Villaseñor, R. Hernández, Differential effects of two widely used solvents, DMSO and ethanol, on the growth and recovery of Trypanosoma cruzi Epimastigotes in culture, The Korean Journal of Parasitology 55(1) (2017) 81. [54] X. Glipa, M. El Haddad, D.J. Jones, J. Rozière, Synthesis and characterisation of sulfonated polybenzimidazole:A highly conducting proton exchange polymer, Solid State Ionics 97(1-4) (1997) 323-331. [55] V. Deimede, G.A. Voyiatzis, J.K. Kallitsis, L. Qingfeng, N.J. Bjerrum, Miscibility behavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cell applications, Macromolecules 33(20) (2000) 7609-7617. [56] H.W. Thompson, L.J. Bellamy, The infra-red spectra of complex molecules. Methuen and Co., London, price 35s, Spectrochim. Acta 7(1956) 250-250. [57] R.P. Bagwe, L.R. Hilliard, W.H. Tan, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding, Langmuir 22(9) (2006) 4357-4362. [58] S. Ghosh, S. Maity, T. Jana, Polybenzimidazole/silica nanocomposites:organic-inorganic hybrid membranes for PEM fuel cell, J. Mater. Chem. 21(38) (2011) 14897-14906. [59] A. Alabi, A. AlHajaj, L. Cseri, G. Szekely, P. Budd, L.D. Zou, Review of nanomaterialsassisted ion exchange membranes for electromembrane desalination. npj, Clean Water 1(1) (2018) 1-22. [60] R. Vinodh, M. Purushothaman, D. Sangeetha, Novel quaternized polysulfone/ZrO2 composite membranes for solid alkaline fuel cell applications, Int. J. Hydrog. Energy 36(12) (2011) 7291-7302. [61] M. Kim, L. Lee, Y. Jung, S. Kim, Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al2O3 fillers, J. Nanosci. Nanotechnol. 13(12) (2013) 7865-7869. [62] S.G. Feng, Y.M. Shang, G.S. Liu, W.Q. Dong, X.F. Xie, J.M. Xu, V.K. Mathur, Novel modification method to prepare crosslinked sulfonated poly (ether ether ketone)/silica hybrid membranes for fuel cells, J. Power Sources 195(19) (2010) 6450-6458. [63] G.H. Hsiue, Y.L. Liu, J. Tsiao, Phosphorus-containing epoxy resins for flame retardancy V:synergistic effect of phosphorus-silicon on flame retardancy, J. Appl. Polym. Sci. 78(1) (2000) 1-7. [64] H. Toiserkani, Fabrication and characterization of poly(benzimidazole-amide)/functionalized titania nanocomposites containing phthalimide and benzimidazole pendent groups, Colloid Polym. Sci. 293(10) (2015) 2911-2920. [65] A. Aslan, A. Bozkurt, Nanocomposite polymer electrolyte membranes based on poly (vinylphosphonic acid)/TiO2 nanoparticles, J. Mater. Res. 27(24) (2012) 3090-3095. [66] N. Tan, Y. Chen, G.Y. Xiao, D.Y. Yan, Synthesis and properties of sulfonated polybenzothiazoles with benzimidazole moieties as proton exchange membranes, J. Membr. Sci. 356(1-2) (2010) 70-77. [67] N. Tan, G.Y. Xiao, D.Y. Yan, G.M. Sun, Preparation and properties of polybenzimidazoles with sulfophenylsulfonyl pendant groups for proton exchange membranes, J. Membr. Sci. 353(1-2) (2010) 51-59. [68] P. Salarizadeh, M.n Javanbakht, M. Abdollahi, L. Naji, Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly (vinyl alcohol) and poly(sulfonic acid)-grafted silica nanoparticles, Int. J. Hydrog. Energy 38(13) (2013) 5473-5479. [69] S. Sasikala, S. Meenakshi, S.D. Bhat, A.K. Sahu, Functionalized Bentonite clay-sPEEK based composite membranes for direct methanol fuel cells, Electrochim. Acta 135(2014) 232-241. [70] M. Moradi, A. Moheb, M. Javanbakht, K. Hooshyari, Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe2TiO5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC), Int. J. Hydrog. Energy 41(4) (2016) 2896-2910. [71] D.Y. Chen, S.J. Wang, M. Xiao, D.M. Han, Y.Z. Meng, Sulfonated poly (fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery, J. Power Sources 195(22) (2010) 7701-7708. [72] M. Vinothkannan, R. Kannan, A.R. Kim, G.G. Kumar, K.S. Nahm, D.J. Yoo, Facile enhancement in proton conductivity of sulfonated poly (ether ether ketone) using functionalized graphene oxide-synthesis, characterization, and application towards proton exchange membrane fuel cells, Colloid Polym. Sci. 294(7) (2016) 1197-1207. [73] D.C. Lee, H.N. Yang, S.H. Park, W.J. Kim, Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell, J. Membr. Sci. 452(2014) 20-28. [74] P. Muthuraja, S. Prakash, V.M. Shanmugam, P. Manisankar, Stable nanofibrous poly (aryl sulfone ether benzimidazole) membrane with high conductivity for high temperature PEM fuel cells, Solid State Ionics 317(2018) 201-209. [75] H.T. Pu, L. Wang, H.Y. Pan, D.C. Wan, Synthesis and characterization of fluorinecontaining polybenzimidazole for proton conducting membranes in fuel cells, J. Polym. Sci. A Polym. Chem. 48(10) (2010) 2115-2122. [76] Q.F. Li, H.C. Rudbeck, A. Chromik, J.O. Jensen, C. Pan, T. Steenberg, M. Calverley, N.J. Bjerrum, J. Kerres, Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes, J. Membr. Sci. 347(1-2) (2010) 260-270. [77] J. Lobato, P. Cañizares, A.R. Manuel, D. Úbeda, F. JavierPinar, A novel titanium PBIbased composite membrane for high temperature PEMFCs, J. Membr. Sci. 369(1-2) (2011) 105-111. [78] J.B. Miao, L.Z. Yao, Z.J. Yang, J.F. Pan, J.S. Qian, T.W. Xu, Sulfonated poly (2,6-dimethyl-1,4-phenyleneoxide)/nano silica hybrid membranes for alkali recovery via diffusion dialysis, Sep. Purif. Technol. 141(2015) 307-313. [79] P. Salarizadeh, M. Javanbakht, S. Pourmahdian, Fabrication and physico-chemical properties of iron titanate nanoparticles based sulfonated poly (ether ether ketone) membrane for proton exchange membrane fuel cell application, Solid State Ionics 281(2015) 12-20. [80] J. Huang, K.S. Zhang, K. Wang, Z.L. Xie, Bradley Ladewig, H.T. Wang, Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties, J. Membr. Sci. 423(2012) 362-370. [81] E. Vijayakumar, A. Subramania, Z.F. Fei, Paul J. Dyson, High-performance dye-sensitized solar cell based on an electrospun poly (vinylidene fluoride-cohexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte, RSC Adv. 5(64) (2015) 52026-52032. [82] W. Dai, H.J. Wang, X.Z. Yuan, J.M. Jonathan, D.J. Yang, J.L. Qiao, J.X. Ma, A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells, Int. J. Hydrog. Energy 34(23) (2009) 9461-9478. [83] Y.H. Cai, J. Hu, H.P. Ma, B.L. Yi, H.M. Zhang, Effects of hydrophilic/hydrophobic properties on the water behavior in the micro-channels of a proton exchange membrane fuel cell, J. Power Sources 161(2) (2006) 843-848. [84] G.J.M. Janssen, M.L.J. Overvelde, Water transport in the proton-exchange-membrane fuel cell:measurements of the effective drag coefficient, J. Power Sources 101(1) (2001) 117-125. [85] Y.F. Li, G.W. He, S.F. Wang, S.N. Yu, F.S. Pan, H. Wu, Z.Y. Jiang, Recent advances in the fabrication of advanced composite membranes, J. Mater. Chem. A 1(35) (2013) 10058-10077. [86] N. Awang, A.F. Ismail, J. Jaafar, T. Matsuura, H. Junoh, M.H.D. Othman, M.A. Rahman, Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell:a review, React. Funct. Polym. 86(2015) 248-258. [87] H.W. Zhang, P.K. Shen, Recent development of polymer electrolyte membranes for fuel cells, Chem. Rev. 112(5) (2012) 2780-2832. [88] Y. Özdemir, N. Üregen, Y. Devrim, Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells, Int. J. Hydrog. Energy 42(4) (2017) 2648-2657. [89] H. Becker, L. Nilausen, C.D. Aili, J.O. Jensen, Q.F. Li, Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes, Electrochem. Commun. 82(2017) 21-24. [90] M.N. Tsampas, A. Pikos, S. Brosda, A. Katsaounis, C.G. Vayenas, The effect of membrane thickness on the conductivity of Nafion, Electrochim. Acta 51(13) (2006) 2743-2755. [91] F. Seland, T. Berning, B. Børresen, R. Tunold, Improving the performance of hightemperature PEM fuel cells based on PBI electrolyte, J. Power Sources 160(1) (2006) 27-36. [92] P.P. Chen, L. Hao, W.J. Wu, Y.F. Li, J.T. Wang, Polymer-inorganic hybrid proton conductive membranes:effect of the interfacial transfer pathways, Electrochim. Acta 212(2016) 426-439. [93] F.J. Pinar, P. Cañizares, M.A. Rodrigo, D. Ubeda, J. Lobato, Titanium composite PBIbased membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount, RSC Adv. 2(4) (2012) 1547-1556. [94] Y.L. Li, Q.T. Nguyen, P. Schaetzel, C. Lixon-Buquet, L. Colasse, V. Ratieuville, S. Marais, Proton exchange membranes from sulfonated polyetheretherketone and sulfonated polyethersulfone-cardo blends:conductivity, water sorption and permeation properties, Electrochim. Acta 111(2013) 419-433. [95] R.P. Pandey, V.K. Shahi, Sulphonated imidized graphene oxide (SIGO) based polymer electrolyte membrane for improved water retention, stability and proton conductivity, J. Power Sources 299(2015) 104-113. [96] M.L. Einsla, Y.S. Kim, M. Hawley, H.-S. Lee, J.E. McGrath, B. Liu, M.D. Guiver, B.S. Pivovar, Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity, Chem. Mater. 20(17) (2008) 5636-5642. [97] C.Y. Huang, J.S. Lin, W.H. Pan, C.M. Shih, Y.L. Liu, S.J. Jessie Lue, Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes, J. Power Sources 303(2016) 267-277. [98] K.H. Lee, D.H. Cho, Y.M. Kim, S.J. Moon, J.G. Seong, D.W. Shin, J.-Y. Sohn, J.F. Kim, Y. M. Lee, Highly conductive and durable poly (arylene ether sulfone) anion exchange membrane with end-group cross-linking, Energy Environ. Sci. 10(1) (2017) 275-285. [99] D.W. Shin, M.D. Guiver, Y.M. Lee, Hydrocarbon-based polymer electrolyte membranes:importance of morphology on ion transport and membrane stability, Chem. Rev. 117(6) (2017) 4759-4805. [100] C.H. Park, S.Y. Lee, D.S. Hwang, D.W. Shin, D.H. Cho, K.H. Lee, T.W. Kim, T.W. Kim, M. Lee, D.S. Kim, C.M. Doherty, A.W. Thornton, A.J. Hill, M.D. Guiver, Y.M. Lee, Nanocrack-regulated self-humidifying membranes, Nature 532(7600) (2016) 480-483. [101] P. Muthuraja, S. Prakash, V.M. Shanmugam, S. Radhakrsihnan, P. Manisankar, Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells:synthesis and characterizations, Int. J. Hydrog. Energy 43(9) (2018) 4763-4772. [102] Y.N.C. Suryani, J.Y. Lai, Y.L. Liu, Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells, J. Membr. Sci. 403(2012) 1-7. [103] D. Plackett, A. Siu, Q.F. Li, C. Pan, J.O. Jensen, S.F. Nielsen, A.A. Permyakova, N.J. Bjerrum, High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells, J. Membr. Sci. 383(1-2) (2011) 78-87. [104] K. Hooshyari, M. Javanbakht, A. Shabanikia, M. Enhessari, Fabrication BaZrO3/PBIbased nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells, J. Power Sources 276(2015) 62-72. [105] C.M.C. Suryani, Y.L. Liu, Y.M. Lee, Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells, J. Mater. Chem. 21(20) (2011) 7480-7486. [106] A. Shabanikia, M. Javanbakht, H.S. Amoli, K. Hooshyari, M. Enhessari, Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature, Electrochim. Acta 154(2015) 370-378. [107] N. Üregen, K. Pehlivanoğlu, Y. Özdemir, Y. Devrim, Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells, Int. J. Hydrog. Energy 42(4) (2017) 2636-2647. [108] M.A. Imran, T.T. Li, X.M. Wu, X.M. Yan, G.H. Abdul-SammedKhan, Fabrication and characterization of sulfonated polybenzimidazole/sulfonated imidized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cells, J. Appl. Polym. Sci. 136(34) (2019) 47892. [109] N.N. Krishnan, S. Lee, R.V. Ghorpade, A. Konovalova, J.H. Jang, H.J. Kim, J. Han, D. Henkensmeier, H. Han, Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HTPEM fuel cell, J. Membr. Sci. 560(2018) 11-20. [110] J.S. Yang, C. Liu, L.P. Gao, J. Wang, Y.X. Xu, R.H. He, Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications, RSC Adv. 5(122) (2015) 101049-101054. [111] Y.F. Yan, Z.E. Zhang, L. Zhang, X. Wang, K. Liu, Z.Q. Yang, Investigation of autothermal reforming of methane for hydrogen production in a spiral multi-cylinder micro-reactor used for mobile fuel cell, Int. J. Hydrog. Energy 40(4) (2015) 1886-1893. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||