[1] P. Tundo, M. Selva, The chemistry of dimethyl carbonate, Acc. Chem. Res. 35 (9) (2002) 706-716. [2] C.L. Berhaut, D. Lemordant, P. Porion, L. Timperman, G. Schmidt, M. Anouti, Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances, Rsc Adv. 9 (8) (2019) 4599-4608. [3] M. Dahbi, F. Ghamouss, F. Tran-Van, D. Lemordant, M. Anouti, Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage, J. Power Sources 196 (22) (2011) 9743-9750. [4] J. Cornely, L.M.S. Ham, D.E. Meade, V. Dragojlovic, Dimethyl carbonate-water: an environmentally friendly solvent system for ruthenium tetraoxide oxidations, Green Chem. 5 (1) (2003) 34-37. [5] W. Won, X. Feng, D. Lawless, Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures, J. Mem. Sci. 209 (2) (2002) 493-508. [6] A.O. Esan, A.D. Adeyemi, S. Ganesan, A review on the recent application of dimethyl carbonate in sustainable biodiesel production, J. Clean. Prod. 257 (2020) 120561. [7] A.O.G. Abdalla, D. Liu, Dimethyl carbonate as a promising oxygenated fuel for combustion: A review, Energies 11 (6) (2018) 1552. [8] K. Xuan, Y.F. Pu, F. Li, A.X. Li, J. Luo, L. Li, F. Wang, N. Zhao, F.K. Xiao, Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66, J. CO2 Util. 27 (2018) 272-282. [9] B. Peng, H.R. Dou, H. Shi, E.E. Ember, J.A. Lercher, Overcoming thermodynamic limitations in dimethyl carbonate synthesis from methanol and CO2, Catal. Lett. 148 (7) (2018) 1914-1919. [10] A. Yan, S.R. Sun, T. Shi, D. Xu, J.Z. Ren, W.F. Shen, Energy-efficient extractive pressure-swing distillation for separating binary minimum azeotropic mixture dimethyl carbonate and ethanol, Sep. Purif. Technol. 229 (2019) 115817. [11] W. Won, X. Feng, D. Lawless, Separation of dimethyl carbonate/methanol/ water mixtures by pervaporation using crosslinked chitosan membranes, Sep. Purif. Technol. 31 (2) (2003) 129-140. [12] P. Cihal, O. Vopicka, T.M. Durdakova, P.M. Budd, W. Harrison, K. Friess, Pervaporation and vapour permeation of methanol-dimethyl carbonate mixtures through PIM-1 membranes, Sep. Purif. Technol. 217 (2019) 206-214. [13] W.Q. Li, C. Molina-Fernandez, J. Estager, J.C.M. Monbaliu, D.P. Debecker, P. Luis, Supported ionic liquid membranes for the separation of methanol/dimethyl carbonate mixtures by pervaporation, J. Mem. Sci. 598 (2020) 117790. [14] S. Bi, R. Wang, S. Liu, J. Yan, B. Mao, A.A. Kornyshev, G. Feng, Minimizing the electrosorption of water from humid ionic liquids on electrodes, Nat. Commun. 9 (1) (2018) 5222. [15] G. Feng, X. Jiang, R. Qiao, A.A. Kornyshev, Water in ionic liquids at electrified interfaces: The anatomy of electrosorption, ACS Nano 8 (11) (2014) 11685-11694. [16] S. Marbach, L. Bocquet, Osmosis, from molecular insights to large-scale applications, Chem. Soc. Rev. 48 (11) (2019) 3102-3144. [17] L. Wang, M.S.H. Boutilier, P.R. Kidambi, D. Jang, N.G. Hadjiconstantinou, R. Karnik, Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes, Nat. Nano. 12 (6) (2017) 509-522. [18] Q. Li, S. Tan, L. Li, Y. Lu, Y. He, Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries, Sci. Adv. 3 (7) (2017) e1701246. [19] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452 (7185) (2008) 301-310. [20] B. Mi, Graphene oxide membranes for ionic and molecular sieving, Science 343 (6172) (2014) 740. [21] R.K. Joshi, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343 (6172) (2014) 752-754. [22] K. Sint, B. Wang, P. Král, Selective ion passage through functionalized graphene nanopores, J. Am. Chem. Soc. 130 (49) (2008) 16448-16449. [23] W. Ying, J. Cai, K. Zhou, D. Chen, Y. Ying, Y. Guo, X. Kong, Z. Xu, X. Peng, Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane, ACS Nano 12 (6) (2018) 5385-5393. [24] M.I. Walker, K. Ubych, V. Saraswat, E.A. Chalklen, P. Braeuninger-Weimer, S. Caneva, R.S. Weatherup, S. Hofmann, U.F. Keyser, Extrinsic cation selectivity of 2D membranes, ACS Nano 11 (2) (2017) 1340-1346. [25] S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde, B. Van der Bruggen, Covalent organic frameworks for membrane separation, Chem. Soc. Rev. 48 (2019) 2665-2681. [26] X. Wu, W. Wei, J. Jiang, J. Caro, A. Huang, High-flux high-selectivity metal-organic framework MIL-160 membrane for xylene isomer separation by pervaporation, Angew. Chem. Int. Edit. 57 (47) (2018) 15354-15358. [27] S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene, Nat. Nano. 7 (2012) 728. [28] K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, W. Jin, A graphene oxide membrane with highly selective molecular separation of aqueous organic solution, Angew. Chem. Int. Edit. 53 (27) (2014) 6929-6932. [29] J. Geng, K. Kim, J. Zhang, A. Escalada, R. Tunuguntla, L.R. Comolli, F.I. Allen, A.V. Shnyrova, K.R. Cho, D. Munoz, Y.M. Wang, C.P. Grigoropoulos, C.M. AjoFranklin, V.A. Frolov, A. Noy, Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes, Nature 514 (7524) (2014) 612-615. [30] X.L. Tian, Z.X. Yang, B. Zhou, P. Xiu, Y.S. Tu, Alcohol-induced drying of carbon nanotubes and its implications for alcohol/water separation: A molecular dynamics study, J. Chem. Phys. 138 (20) (2013) 204711. [31] Y. Zhu, X. Guo, Q. Shao, M. Wei, X. Wu, L. Lu, X. Lu, Molecular simulation study of the effect of inner wall modified groups on ionic hydration confined in carbon nanotube, Fluid Phase Equilibr. 297 (2) (2010) 215-220. [32] Y. Zhu, M. Wei, Q. Shao, L. Lu, X. Lu, W. Shen, Molecular dynamics study of pore inner wall modification effect in structure of water molecules confined in single-walled carbon nanotubes, J. Phys. Chem. C 113 (3) (2009) 882-889. [33] Q. Shao, J. Zhou, L. Lu, X. Lu, Y. Zhu, S. Jiang, Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes, Nano Lett. 9 (3) (2009) 989-994. [34] Q. Shao, Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes, Phys. Chem. Chem. Phys. 10 (2008) 1896-1906. [35] Q. Shao, L. Huang, J. Zhou, L. Lu, L. Zhang, X. Lu, S. Jiang, K.E. Gubbins, Y. Zhu, W. Shen, Molecular dynamics study on diameter effect in structure of ethanol molecules confined in single-walled carbon nanotubes, J. Phys. Chem. C 111 (43) (2007) 15677-15685. [36] L.L. Huang, Q. Shao, L.H. Lu, X.H. Lu, L.Z. Zhang, J. Wang, S.Y. Jiang, Helicity and temperature effects on static properties of water molecules confined in modified carbon nanotubes, Phys. Chem. Chem. Phys. 8 (33) (2006) 3836-3844. [37] J. Wang, Y. Zhu, J. Zhou, X.-H. Lu, Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes, Phys. Chem. Chem. Phys. 6 (4) (2004) 829-835. [38] Q. Gao, Y. Zhu, Y. Ruan, Y. Zhang, W. Zhu, X. Lu, L. Lu, Effect of adsorbed alcohol layers on the behavior of water molecules confined in a graphene nanoslit: A molecular dynamics study, Langmuir 33 (42) (2017) 11467-11474. [39] Z. Dai, Y. You, Y. Zhu, S. Wang, W. Zhu, X. Lu, Atomistic insights into the layered microstructure and time-dependent stability of [BMIM][PF6] confined within the meso-slit of carbon, J. Phys. Chem. B 123 (31) (2019) 6857-6869. [40] W. Li, W. Wang, X. Zheng, Z. Dong, Y. Yan, J. Zhang, Molecular dynamics simulations of water flow enhancement in carbon nanochannels, Comp. Mater. Sci. 136 (2017) 60-66. [41] L. Liu, D. Nicholson, S.K. Bhatia, Interfacial resistance and length-dependent transport diffusivities in carbon nanotubes, J. Phys. Chem. C 120 (46) (2016) 26363-26373. [42] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (24) (1987) 6269-6271. [43] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (45) (1996) 11225-11236. [44] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (19) (1995) 8577-8593. [45] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126 (1) (2007) 014101. [46] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. App. Phys. 52 (12) (1981) 7182-7190. [47] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: Fast, flexible, and free, J. Comp. Chem. 26 (16) (2005) 1701-1718. [48] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1) (1996) 33-38. [49] W. Zhao, J.S. Francisco, X.C. Zeng, CO separation from H2 via hydrate formation in single-walled carbon nanotubes, J. Phys. Chem. Lett. 7 (2016) 4911-4915. [50] P. Pršlja, E. Lomba, P. Gómez-Álvarez, T. Urbič, E.G. Noya, Adsorption of water, methanol, and their mixtures in slit graphite pores, J. Chem. Phys. 150 (2) (2019) 024705. [51] S. Dixit, J. Crain, W.C.K. Poon, J.L. Finney, A.K. Soper, Molecular segregation observed in a concentrated alcohol-water solution, Nature 416 (6883) (2002) 829-832. [52] A.W. Omta, M.F. Kropman, S. Woutersen, H.J. Bakker, Negligible effect of ions on the hydrogen-bond structure in liquid water, Science 301 (5631) (2003) 347. [53] A. Luzar, D. Chandler, Hydrogen-bond kinetics in liquid water, Nature 379 (6560) (1996) 55-57. [54] N. Zhang, Z. Shen, C. Chen, G. He, C. Hao, Effect of hydrogen bonding on selfdiffusion in methanol/water liquid mixtures: A molecular dynamics simulation study, J. Mol. Liq. 203 (2015) 90-97. [55] I. Bakó, T. Megyes, S. Bálint, V. Chihaia, M.-C. Bellissent-Funel, H. Krienke, A. Kopf, S.-H. Suh, Hydrogen bonded network properties in liquid formamide, The J. Chem. Phys. 132 (1) (2010) 014506. [56] G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414 (6860) (2001) 188-190. |