中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 178-184.DOI: 10.1016/j.cjche.2020.12.004
• Biocatalysis and Bioreactor Engineering • 上一篇 下一篇
Jianye Xia, Guan Wang, Meng Fan, Min Chen, Zeyu Wang, Yingping Zhuang
收稿日期:
2020-10-18
修回日期:
2020-12-03
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Yingping Zhuang
基金资助:
Jianye Xia, Guan Wang, Meng Fan, Min Chen, Zeyu Wang, Yingping Zhuang
Received:
2020-10-18
Revised:
2020-12-03
Online:
2021-02-28
Published:
2021-05-15
Contact:
Yingping Zhuang
Supported by:
摘要: The production capability of a fermentation process is predominately determined by individual strains, which ultimately affected ultimately by interactions between the scale-dependent flow field developed within bioreactors and the physiological response of these strains. Interpreting these complicated interactions is key for better understanding the scale-up of the fermentation process. We review these two aspects and address progress in strategies for scaling up fermentation processes. A perspective on how to incorporate the multiomics big data into the scale-up strategy is presented to improve the design and operation of industrial fermentation processes.
Jianye Xia, Guan Wang, Meng Fan, Min Chen, Zeyu Wang, Yingping Zhuang. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains[J]. 中国化学工程学报, 2021, 29(2): 178-184.
Jianye Xia, Guan Wang, Meng Fan, Min Chen, Zeyu Wang, Yingping Zhuang. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 178-184.
[1] S. Sánchez, A. Chávez, A. Forero, Y. García-Huante, A. Romero, M. Sánchez, D. Rocha, B. Sánchez, M. Ávalos, S. Guzmán-Trampe, R. Rodríguez-Sanoja, E. Langley, B. Ruiz, Carbon source regulation of antibiotic production, J. Antibiotics 63 (8) (2010) 442–459. [2] M. Sauer, D. Porro, D. Mattanovich, P. Branduardi, Microbial production of organic acids: expanding the markets, Trends Biotechnol. 26 (2) (2008) 100–108. [3] J. Nielsen, Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering, Bioengineered 4 (4) (2013) 207–211. [4] F.N. Niyonzima, Production of microbial industrial enzymes, Acta Scientific Microbiol. 2 (12) (2019) 75–89. [5] P. Neubauer, Editorial: Towards faster bioprocess development, Biotechnol. J. 6 (8) (2011) 902–903. [6] N. Milne, P. Thomsen, N. Mølgaard Knudsen, P. Rubaszka, M. Kristensen, I. Borodina, Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives, Metabolic Eng. 60 (2020) 25–36. [7] J. Sáez-Sáez, G. Wang, E.R. Marella, S. Sudarsan, M. Cernuda Pastor, I. Borodina, Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production, Metabolic Eng. 62(2020) 51–61. [8] J.S. Crater, J.C. Lievense, Scale-up of industrial microbial processes, FEMS Microbiol. Lett. 365 (13) (2018) fny138. [9] F. Delvigne, R. Takors, R. Mudde, W. van Gulik, H. Noorman, Bioprocess scaleup/down as integrative enabling technology: from fluid mechanics to systems biology and beyond, Microb. Biotechnol. 10 (5) (2017) 1267–1274. [10] S. Xu, L. Hoshan, R. Jiang, B. Gupta, E. Brodean, K. O’Neill, T.C. Seamans, J. Bowers, H. Chen, A practical approach in bioreactor scale-up and process transfer using a combination of constant P/V and vvm as the criterion, Biotechnol. Prog. 33 (4) (2017) 1146–1159. [11] J. Xia, G. Wang, J. Lin, Y. Wang, J. Chu, Y. Zhuang, S. Zhang, Advances and practices of bioprocess scale-up, Adv. Biochem. Eng./Biotechnol. 152 (2015) 137–151. [12] B. Li, U. Becken, M. Sha, Tackling the challenge of scalability, G. E. N. 36 (2016) 9. [13] R. Afshar Ghotli, M.S. Shafeeyan, M.R. Abbasi, A.A. Abdul Raman, S. Ibrahim, Macromixing study for various designs of impellers in a stirred vessel, Chem. Eng. Process. -Process Intensification. 148 (2020) 107794. [14] K. Jairamdas, A. Bhalerao, M.B. Machado, S.M. Kresta, Blend time measurement in the confined impeller stirred tank, Chem. Eng. Technol. 42 (8) (2019) 1594–1601. [15] T. Moucha, V. Linek, E. Prokopova, Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations, Chem. Eng. Sci. 58 (9) (2003) 1839–1846. [16] A.R. Lara, E. Galindo, O.T. Ramirez, L.A. Palomares, Living with heterogeneities in bioreactors, Mol. Biotechnol. 34 (3) (2006) 355–381. [17] A.W. Nienow, On impeller circulation and mixing effectiveness in the turbulent flow regime, Chem. Eng. Sci. 52 (15) (1997) 2557–2565. [18] van ’t Riet K., van der Lans R.G.J.M., in: Edition)Moo-Young M.Editor (Ed.), 2.07 -Mixing in Bioreactor Vessels, in Comprehensive Biotechnology (Second Edition), M. Moo-Young, Editor, Academic Press, Burlington, 2011, pp. 63–80. [19] F. Garcia-Ochoa, E. Gomez, Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview, Biotechnol. Adv. 27 (2) (2009) 153–176. [20] T. Zhang, T. Wang, J. Wang, Analysis and measurement of mass transfer in airlift loop reactors, Chin. J. Chem. Eng. 14 (5) (2006) 604–610. [21] K.G. Clarke, L.D.C. Correia, Oxygen transfer in hydrocarbon–aqueous dispersions and its applicability to alkane bioprocesses: A review, Biochem. Eng. J. 39 (3) (2008) 405–429. [22] Y.S. Liu, J.Y. Wu, K.P. Ho, Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures, Biochem. Eng. J. 27 (3) (2006) 331–335. [23] H. Djelal, F. Larher, G. Martin, A. Amrane, Effect of the dissolved oxygen on the bioproduction of glycerol and ethanol by Hansenula anomala growing under salt stress conditions, J Biotechnol. 125 (1) (2006) 95–103. [24] M. Funke, A. Buchenauer, W. Mokwa, S. Kluge, L. Hein, C. Müller, F. Kensy, J. Büchs, Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems, Microb. Cell Fact. 9 (1) (2010) 86. [25] R. Puskeiler, K. Kaufmann, D. Weuster-Botz, Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD), Biotechnol. Bioeng. 89 (5) (2005) 512–523. [26] B.H. Junker, Scale-up methodologies for Escherichia coli and yeast fermentation processes, J. Biosci. Bioeng. 97 (6) (2004) 347–364. [27] C. Li, J.Y. Xia, J. Chu, Y.H. Wang, Y.P. Zhuang, S.L. Zhang, CFD analysis of the turbulent flow in baffled shake flasks, Biochem. Eng. J. 70 (2013) 140–150. [28] J.Y. Xia, Y.H. Wang, S.L. Zhang, N. Chen, P. Yin, Y.P. Zhuang, J. Chu, Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment, Biochem. Eng. J. 43 (3) (2009) 252–260. [29] P. Yin, Y.H. Wang, S.L. Zhang, J. Chu, Y.P. Zhuang, N. Chen, X.F. Li, Y.B. Wu, Effect of mycelial morphology on bioreactor performance and avermectin production of Streptomyces avermitilis in submerged cultivations, J. Chin. Inst. Chem. Eng, 39 (6) (2008) 609–615. [30] R. Gómez, I. Schnabel, J. Garrido, Pellet growth and citric acid yield of Aspergillus niger 110, Enzyme Microb. Technol. 10 (3) (1988) 188–191. [31] L. Veiter, V. Rajamanickam, C. Herwig, The filamentous fungal pellet— relationship between morphology and productivity, Appl. Microbiol. Biotechnol. 102 (7) (2018) 2997–3006. [32] E.M. Rodríguez Porcel, J.L. Casas López, J.A. Sánchez Pérez, J.M. Fernández Sevilla, Y. Chisti, Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus, Biochem. Eng. J. 26 (2) (2005) 139–144. [33] A. Hille, T.R. Neu, D.C. Hempel, H. Horn, Oxygen profiles and biomass distribution in biopellets of Aspergillus niger, Biotechnol. Bioeng. 92 (5) (2005) 614–1423. [34] J.Y. Xia, S.J. Wang, S.L. Zhang, J.J. Zhong, Computational investigation of fluid dynamics in a recently developed centrifugal impeller bioreactor, Biochem. Eng. J. 38 (3) (2008) 406–413. [35] H. Wang, J. Xia, Z. Zheng, Y.P. Zhuang, X. Yi, D. Zhang, P. Wang, Hydrodynamic investigation of a novel shear-generating device for the measurement of anchorage-dependent cell adhesion intensity, Bioprocess Biosyst. Eng. 41 (9) (2018) 1371–1382. [36] C. Li, X. Teng, H. Peng, X. Yi, Y. Zhuang, S. Zhang, J. Xia, Novel scale-up strategy based on three-dimensional shear space for animal cell culture, Chem. Eng. Sci. 212 (2020) 115329. [37] Y. Liu, Z.-J. Wang, J.-y. Xia, C. Haringa, Y.-p. Liu, J. Chu, Y.-P. Zhuang, S.-L. Zhang, Application of Euler-Lagrange CFD for quantitative evaluating the effect of shear force on Carthamus tinctorius L. cell in a stirred tank bioreactor, Biochem. Eng. J. 114 (2016) 209–217. [38] S.B. Pawar, Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate, Bioprocess. Biosyst. Eng. 41 (1) (2018) 31–45. [39] D. Visser, G.A. van Zuylen, J.C. van Dam, M.R. Eman, A. Pröll, C. Ras, L. Wu, W.M. van Gulik, J.J. Heijnen, Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses, Biotechnol. Bioeng. 88 (2) (2004) 157–167. [40] M.R. Mashego, W.M. van Gulik, J.L. Vinke, D. Visser, J.J. Heijnen, In vivo kinetics with rapid perturbation experiments in Saccharomyces cerevisiae using a second-generation BioScope, Metab. Eng. 8 (4) (2006) 370–383. [41] H.J. Noorman, J.J. Heijnen, Biochemical engineering’s grand adventure, Chem. Eng. Sci. 170 (2017) 677–693. [42] C.J. Hewitt, A.W. Nienow, The scale up of microbial batch and fed-batch fermentation processes, Adv. Appl. Microbiol. 62 (2007) 105–135. [43] F. Bylund, E. Collet, S.-O. Enfors, G. Larsson, Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation, Bioprocess. Eng. 18 (3) (1998) 171–180. [44] F. Käß, S. Junne, P. Neubauer, W. Wiechert, M. Oldiges, Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum, Microb. Cell Fact. 13 (1) (2014) 1–11. [45] G. Wang, W.J. Tang, J.Y. Xia, J. Chu, H. Noorman, W.M. van Gulik, Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses, Eng. Life Sci. 15 (1) (2015) 20–29. [46] F. Delvigne, H. Noorman, Scale-up/Scale-down of microbial bioprocesses: a modern light on an old issue, Microb. Biotechnol. 10 (4) (2017) 685–687. [47] P. Neubauer, S. Junne, Scale-down simulators for metabolic analysis of largescale bioprocesses, Curr. Opin. Biotechnol. 21 (1) (2010) 114–121. [48] A. Lemoine, N. Maya Martinez-Iturralde, R. Spann, P. Neubauer, S. Junne, Response of Corynebacterium glutamicum exposed to oscillating cultivation conditions in a two-and a novel three-compartment scale-down bioreactor, Biotechnol. Bioeng. 112 (6) (2015) 1220–1231. [49] S. Wang, P. Liu, W. Shu, C. Li, H. Li, S. Liu, J. Xia, H. Noorman, Dynamic response of Aspergillus niger to single pulses of glucose with high and low concentrations, Bioresour. Bioprocess. 6 (1) (2019) 16. [50] F. Käß, I. Hariskos, A. Michel, H.J. Brandt, R. Spann, S. Junne, W. Wiechert, P. Neubauer, M. Oldiges, Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in twocompartment bioreactor, Bioprocess Biosyst. Eng. 37 (6) (2014) 1151–1162. [51] S. Junne, A. Klingner, J. Kabisch, T. Schweder, P. Neubauer, A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations, Biotechnol. J. 6 (8) (2011) 1009–1017. [52] S.O. Enfors, M. Jahic, A. Rozkov, B. Xu, M. Hecker, B. Jurgen, E. Kruger, T. Schweder, G. Hamer, D. O’Beirne, N. Noisommit-Rizzi, M. Reuss, L. Boone, C. Hewitt, C. McFarlane, A. Nienow, T. Kovacs, C. Tragardh, L. Fuchs, J. Revstedt, P.C. Friberg, B. Hjertager, G. Blomsten, H. Skogman, S. Hjort, F. Hoeks, H.Y. Lin, P. Neubauer, R. van der Lans, K. Luyben, P. Vrabel, A. Manelius, Physiological responses to mixing in large scale bioreactors, J. Biotechnol. 85 (2) (2001) 175–185. [53] C. Li, W. Shu, S. Wang, P. Liu, Y. Zhuang, S. Zhang, J. Xia, Dynamic metabolic response of Aspergillus niger to glucose perturbation: evidence of regulatory mechanism for reduced glucoamylase production, J. Biotechnol. 287 (2018) 28–40. [54] P.A. Saa, L.K. Nielsen, Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks, Biotechnol. Adv. 35 (8) (2017) 981–1003. [55] J. Almquist, M. Cvijovic, V. Hatzimanikatis, J. Nielsen, M. Jirstrand, Kinetic models in industrial biotechnology -Improving cell factory performance, Metab. Eng. 24 (2014) 38–60. [56] L. Wu, M.R. Mashego, A.M. Proell, J.L. Vinke, C. Ras, J. van Dam, W.A. van Winden, W.M. van Gulik, J.J. Heijnen, In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation, Metab. Eng. 8 (2) (2006) 160–171. [57] J.H. Park, S.Y. Lee, T.Y. Kim, H.U. Kim, Application of systems biology for bioprocess development, Trends Biotechnol. 26 (8) (2008) 404–412. [58] D. McCloskey, B.Ø. Palsson, A.M. Feist, Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli, Mol. Syst. Biol. 9 (1) (2013) 661. [59] J.S. Edwards, B.O. Palsson, Systems properties of the Haemophilus influenzaeRd metabolic genotype, J. Biol. Chem. 274 (25) (1999) 17410–17416. [60] M.A. Garcia-Albornoz, J. Nielsen, Application of genome-scale metabolic models in metabolic engineering, Ind. Biotechnol. 9 (4) (2013) 203–214. [61] C. Bro, B. Regenberg, J. Förster, J. Nielsen, In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production, Metab. Eng. 8 (2) (2006) 102–111. [62] J.L. Hjersted, M.A. Henson, R. Mahadevan, Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture, Biotechnol. Bioeng. 97 (5) (2007) 1190–1204. [63] J.E. Yang, S.J. Park, W.J. Kim, H.J. Kim, B.J. Kim, H. Lee, J. Shin, S.Y. Lee, One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains, Nat. Commun. 9 (1) (2018) 1–10. [64] E. Belda, A. Sekowska, F. Le Fèvre, A. Morgat, D. Mornico, C. Ouzounis, D. Vallenet, C. Medigue, A. Danchin, An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology 159(Pt_4) (2013) 757–770. [65] R. Agren, J.M. Otero, J. Nielsen, Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production, J. Ind. Microbiol. Biotechnol. 40 (7) (2013) 735–747. [66] W. Tang, A.T. Deshmukh, C. Haringa, G. Wang, W. van Gulik, W. van Winden, M. Reuss,J.J.Heijnen,J.Xia,J.Chu,H.J.Noorman,A9-poolmetabolicstructuredkinetic model describing days to seconds dynamics of growth and product formation by Penicillium chrysogenum, Biotechnol. Bioeng. 114 (8) (2017) 1733–1743. [67] C. Haringa, H.J. Noorman, R.F. Mudde, Lagrangian modeling of hydrodynamic–kinetic interactions in (bio)chemical reactors: Practical implementation and setup guidelines, Chem. Eng. Sci. 157 (2017) 159–168. [68] European Commission, Bioprocess scale-up strategy based on integration of microbial physiology and fluid dynamics, http://cordis.europa.eu/project/rcn/31093_en.html. [69] H. Noorman, An industrial perspective on bioreactor scale-down: What we can learn from combined large-scale bioprocess and model fluid studies, Biotechnol. J. 6 (8) (2011) 934–943. [70] A.R. Lara, L.A. Palomares, O.T. Scale-down Ramirez, Simulating large-scale cultures in the laboratory, in Industrial Biotechnology: Products and processes, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr, Weinheim, Germany, 2016. [71] G. Wang, J. Chu, H. Noorman, J. Xia, W. Tang, Y. Zhuang, S. Zhang, Prelude to rational scale-up of penicillin production: A scale-down study, Appl. Microbiol. Biotechnol. 98 (6) (2014) 2359–2369. |
[1] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant[J]. 中国化学工程学报, 2023, 60(8): 228-234. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117. |
[3] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies[J]. 中国化学工程学报, 2023, 58(6): 1-10. |
[4] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood[J]. 中国化学工程学报, 2023, 58(6): 53-68. |
[5] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification[J]. 中国化学工程学报, 2023, 58(6): 163-169. |
[6] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels[J]. 中国化学工程学报, 2023, 58(6): 266-281. |
[7] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization[J]. 中国化学工程学报, 2023, 57(5): 10-16. |
[8] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32. |
[9] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer[J]. 中国化学工程学报, 2023, 55(3): 84-92. |
[10] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. 中国化学工程学报, 2023, 55(3): 123-136. |
[11] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures[J]. 中国化学工程学报, 2023, 53(1): 63-72. |
[12] | Tengjie Wang, Wenkai Li, Xuehui Ge, Ting Qiu, Xiaoda Wang. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors[J]. 中国化学工程学报, 2023, 53(1): 243-250. |
[13] | Yingjie Song, Shuqi Zhong, Yingjiao Li, Kun Dong, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO: Process optimization and reaction kinetics[J]. 中国化学工程学报, 2023, 53(1): 300-309. |
[14] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts[J]. 中国化学工程学报, 2023, 53(1): 310-316. |
[15] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation[J]. 中国化学工程学报, 2023, 53(1): 317-323. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||