[1] J.M. Reichert, C.J. Rosensweig, L.B. Faden, M.C. Dewitz, Monoclonal antibody successes in the clinic, Nat. Biotechnol. 23 (2005) 1073–1078. [2] J.M. Reichert, Marketed therapeutic antibodies compendium, Mabs-Austin 4 (2012) 413–415. [3] G. Walsh, Biopharmaceutical benchmarks 2018, Nat. Biotechnol. 36 (2018) 1136–1145. [4] B.G. de la Torre, F. Albericio, The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules, Molecules 25 (2020) 745. [5] R. Mathaes, H.C. Mahler, Next generation biopharmaceuticals: product development, Adv. Biochem. Eng. Biot. 165 (2018) 253–276. [6] R.M. Lu, Y.C. Hwang, I.J. Liu, C.C. Lee, H.Z. Tsai, H.J. Li, H.C. Wu, Development of therapeutic antibodies for the treatment of diseases, J. Biomed. Sci. 27 (2020) 1. [7] J.R. Birch, A.J. Racher, Antibody production, Adv. Drug Deliver. Rev. 58 (2006) 671–685. [8] F. Li, N. Vijayasankaran, A. Shen, R. Kiss, A. Amanullah, Cell culture processes for monoclonal antibody production, Mabs 2 (2010) 466–479. [9] A.A. Shukla, J. Thommes, Recent advances in large-scale production of monoclonal antibodies and related proteins, Trends Biotechnol. 28 (2010) 253–261. [10] C.L. Gaughan, The present state of the art in expression, production and characterization of monoclonal antibodies, Mol. Divers 20 (2016) 255–270. [11] J.M. Bielser, M. Wolf, J. Souquet, H. Broly, M. Morbidelli, Perfusion mammalian cell culture for recombinant protein manufacturing –A critical review, Biotechnol. Adv. 36 (2018) 1328–1340. [12] R. Kunert, D. Reinhart, Advances in recombinant antibody manufacturing, Appl. Microbiol. Biot. 100 (2016) 3451–3461. [13] M.E. Rodrigues, A.R. Costa, M. Henriques, J. Azeredo, R. Oliveira, Technological progresses in monoclonal antibody production systems, Biotechnol. Prog. 26 (2010) 332–351. [14] D. Low, R. O’Leary, N.S. Pujar, Future of antibody purification, J. Chromatogr. B 848 (2007) 48–63. [15] N. Singh, S. Herzer, Downstream processing technologies/capturing and final purification opportunities for innovation, change, and improvement. A review of downstream processing developments in protein purification, Adv. Biochem. Eng. Biot. 165 (2018) 115–178. [16] A. Jungbauer, R. Hahn, Engineering protein A affinity chromatography, Curr. Opin. Drug Disc. 7 (2004) 248–256. [17] M. Vazquez-Rey, D.A. Lang, Aggregates in monoclonal antibody manufacturing processes, Biotechnol. Bioeng. 108 (2011) 1494–1508. [18] H.F. Liu, J.F. Ma, C. Winter, R. Bayer, Recovery and purification process development for monoclonal antibody production, Mabs 2 (2010) 480–499. [19] A.L. Zydney, Continuous downstream processing for high value biological products: A review, Biotechnol. Bioeng. 113 (2016) 465–475. [20] G.R. Bolton, K.K. Mehta, The role of more than 40 years of improvement in protein A chromatography in the growth of the therapeutic antibody industry, Biotechnol. Prog. 32 (2016) 1193–1202. [21] A.A. Shukla, B. Hubbard, T. Tressel, S. Guhan, D. Low, Downstream processing of monoclonal antibodies –Application of platform approaches, J. Chromatogr. B 848 (2007) 28–39. [22] A. Forsgren, J. Sjoquist, “Protein A” from S. aureus. I. Pseudo-immune reaction with human gamma-globulin, J. Immunol. 97 (1966) 822–827. [23] M. Graille, E.A. Stura, A.L. Corper, B.J. Sutton, M.J. Taussig, J.B. Charbonnier, G.J. Silverman, Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: Structural basis for recognition of B-cell receptors and superantigen activity, Proc. Natl. Acad. Sci. USA 97 (2000) 5399–5404. [24] M.D.P. Boyle, The type I bacterial immunoglobulin-binding protein: Staphylococcal protein A, in: M.D.P. Boyle (Ed.), Bacterial Immunoglobulinbinding Proteins: Microbiology, Chemistry, and Biology, Academic Press, San Diego, 1990, pp. 17–28. [25] P.L. Ey, S.J. Prowse, C.R. Jenkin, Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose, Immunochemistry 15 (1978) 429–436. [26] B. Nilsson, T. Moks, B. Jansson, L. Abrahmsen, A. Elmblad, E. Holmgren, C. Henrichson, T.A. Jones, M. Uhlen, A synthetic IgG-binding domain based on staphylococcal protein A, Protein Eng. 1 (1987) 107–113. [27] R.M. Bao, H.M. Yang, C.M. Yu, J.B. Tang, Oriented covalent immobilization of engineered ZZ-Cys onto Maleimide-Sepharose: An affinity platform for IgG purification, Chromatographia 79 (2016) 1271–1276. [28] E. Muller, J. Vajda, Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography, J. Chromatogr. B 1021 (2016) 159–168. [29] R. Hahn, R. Schlegel, A. Jungbauer, Comparison of protein A affinity sorbents, J. Chromatogr. B 790 (2003) 35–51. [30] T.M. Pabst, J. Thai, A.K. Hunter, Evaluation of recent Protein A stationary phase innovations for capture of biotherapeutics, J. Chromatogr. A 1554 (2018) 45–60. [31] S. Graslund, P. Nordlund, J. Weigelt, J. Bray, B.M. Hallberg, O. Gileadi, S. Knapp, U. Oppermann, C. Arrowsmith, R. Hui, J. Ming, S. Dhe-Paganon, H.W. Park, A. Savchenko, A. Yee, A. Edwards, R. Vincentelli, C. Cambillau, R. Kim, S.H. Kim, Z. Rao, Y. Shi, T.C. Terwilliger, C.Y. Kim, L.W. Hung, G.S. Waldo, Y. Peleg, S. Albeck, T. Unger, O. Dym, J. Prilusky, J.L. Sussman, R.C. Stevens, S.A. Lesley, I.A. Wilson, A. Joachimiak, F. Collart, I. Dementieva, M.I. Donnelly, W.H. Eschenfeldt, Y. Kim, L. Stols, R. Wu, M. Zhou, S.K. Burley, J.S. Emtage, J.M. Sauder, D. Thompson, K. Bain, J. Luz, T. Gheyi, F. Zhang, S. Atwell, S.C. Almo, J. B. Bonanno, A. Fiser, S. Swaminathan, F.W. Studier, M.R. Chance, A. Sali, T.B. Acton, R. Xiao, L. Zhao, L.C. Ma, J.F. Hunt, L. Tong, K. Cunningham, M. Inouye, S. Anderson, H. Janjua, R. Shastry, C.K. Ho, D.Y. Wang, H. Wang, M. Jiang, G.T. Montelione, D.I. Stuart, R.J. Owens, S. Daenke, A. Schutz, U. Heinemann, S. Yokoyama, K. Bussow, K.C. Gunsalus, S.G. Consortium, A.F. Macromol, B.S.G. Ctr, C.S.G. Consortium, I.C.S. Function, I.S.P. Ctr, J.C.S. Genomics, M.C.S. Genomics, N.Y.S.G.R. Ctr, N.S.G. Consortium, O.P.P. Facility, P.S.P. Facility, M.D. C.M. Med, R.S.G. Proteomics, S. Complexes, Protein production and purification, Nat. Methods 5 (2008) 135–146. [32] K. Jensen, A normally occurring staphylococcus antibody in human serum, Acta Path. Microbiol. Scand. 44 (1958) 421–428. [33] A.B. Robinson, C.J. Rudd, Deamidation of glutaminyl and asparaginyl residues in peptides and proteins, Curr. Top. Cell. Regul. 8 (1974) 247–295. [34] N.E. Robinson, Protein deamidation, Proc. Natl. Acad. Sci. USA 99 (2002) 5283–5288. [35] N.E. Robinson, A.B. Robinson, Deamidation of human proteins, Proc. Natl. Acad. Sci. USA 98 (2001) 12409–12413. [36] A. Gronberg, M. Eriksson, M. Ersoy, H.J. Johansson, A tool for increasing the lifetime of chromatography resins, Mabs 3 (2011) 192–202. [37] L. Wang, J. Dembecki, N.E. Jaffe, B.W. O’Mara, H. Cai, C.N. Sparks, J. Zhang, S.G. Laino, R.J. Russell, M. Wang, A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification, J. Chromatogr. A 1308 (2013) 86–95. [38] S. Gulich, M. Linhult, S. Stahl, S. Hober, Engineering streptococcal protein G for increased alkaline stability, Protein Eng. 15 (2002) 835–842. [39] M. Linhult, S. Gulich, T. Graslund, A. Simon, M. Karlsson, A. Sjoberg, K. Nord, S. Hober, Improving the tolerance of a protein a analogue to repeated alkaline exposures using a bypass mutagenesis approach, Proteins 55 (2004) 407–416. [40] B. Palmer, K. Angus, L. Taylor, J. Warwicker, J.P. Derrick, Design of stability at extreme alkaline pH in streptococcal protein G, J. Biotechnol. 134 (2008) 222–230. [41] Z.-L. Guan, S. Bai, Y. Sun, Q.-H. Shi, Construction and characteristics of alkalitolerance mutants of Z domain for protein A chromatography, CIESC J. 68 (2017) 3459–3465. (in Chinese). [42] K. Minakuchi, D. Murata, Y. Okubo, Y. Nakano, S. Yoshida, Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution, Protein Sci. 22 (2013) 1230–1238. [43] G. Fassina, A. Verdoliva, G. Palombo, M. Ruvo, G. Cassani, Immunoglobulin specificity of TG19318: a novel synthetic ligand for antibody affinity purification, J. Mol. Recognit. 11 (1998) 128–133. [44] R.X. Li, V. Dowd, D.J. Stewart, S.J. Burton, C.R. Lowe, Design, synthesis, and application of a Protein A mimetic, Nat. Biotechnol. 16 (1998) 190–195. [45] E. Boschetti, Antibody separation by hydrophobic charge induction chromatography, Trends Biotechnol. 20 (2002) 333–337. [46] S. Ghose, B. Hubbard, S.M. Cramer, Evaluation and comparison of alternatives to Protein A chromatography - Mimetic and hydrophobic charge induction chromatographic stationary phases, J. Chromatogr. A 1122 (2006) 144–152. [47] Q.H. Shi, Z. Cheng, Y. Sun, 4-(1H-imidazol-1-yl) aniline: A new ligand of mixed-mode chromatography for antibody purification, J. Chromatogr. A 1216 (2009) 6081–6087. [48] S. Gulich, M. Linhult, P.A. Nygren, M. Uhlen, S. Hober, Stability towards alkaline conditions can be engineered into a protein ligand, J. Biotechnol. 80 (2000) 169–178. [49] S. Yoshida, D. Murata, S. Taira, K. Iguchi, M. Takano, Y. Nakano, K. Minakuchi, Rational design and engineering of protein A to obtain the controlled elution profile in monoclonal antibody purification, Chem.-Bio Inform. J. 12 (2012) 1–13. [50] S. Gülich, M. Uhlen, S. Hober, Protein engineering of an IgG-binding domain allows milder elution conditions during affinity chromatography, J. Biotechnol. 76 (2000) 233–244. [51] H.F. Xia, Z.D. Liang, S.L. Wang, P.Q. Wu, X.H. Jin, Molecular modification of protein A to Improve the Elution pH and alkali resistance in affinity chromatography, Appl. Biochem. Biotechnol. 172 (2014) 4002–4012. [52] H. Watanabe, H. Matsumaru, A. Ooishi, S. Honda, Structure-based histidine substitution for optimizing pH-sensitive Staphylococcus protein A, J. Chromatogr. B 929 (2013) 155–160. [53] G. Rodrigo, M. Ander, G. Bauren, T. Bjoerkman, Mutated immunoglobulinbinding polypeptides, in: U.S.P. Office (Ed.), Patent Application Publication, GE Healthcare Bio-Sciences AB, United States, 2016, p. 23. [54] E. Fiedler, U. Haupts, Fc binding proteins with cysteine in the C-terminal helical region, in: U.S.P. Office (Ed.), Patent Application Publication, Repligen Corporation, United States, 2020, p. 53. [55] L. Zhao, K. Zhu, Y.D. Huang, Q. Li, X.N. Li, R.Y. Zhang, Z.G. Su, Q.B. Wang, G.H. Ma, Enhanced binding by dextran-grafting to Protein A affinity chromatographic media, J. Sep. Sci. 40 (2017) 1493–1499. [56] X.H. Yang, L.M. Huan, X.S. Chu, Y. Sun, Q.H. Shi, A comparative investigation of random and oriented immobilization of protein A ligands on the binding of immunoglobulin G, Biochem. Eng. J. 139 (2018) 15–24. [57] L. Yu, L. Zhang, Y. Sun, Protein behavior at surfaces: Orientation, conformational transitions and transport, J. Chromatogr. A 1382 (2015) 118–134. [58] Y. Tao, G. Carta, Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography, J. Chromatogr. A 1211 (2008) 70–79. [59] S. Ghose, B. Hubbard, S.M. Cramer, Binding capacity differences for antibodies and Fc-fusion proteins on protein A chromatographic materials, Biotechnol. Bioeng. 96 (2007) 768–779. [60] M.F. von Roman, S. Berensmeier, Improving the binding capacities of protein A chromatographic materials by means of ligand polymerization, J. Chromatogr. A 1347 (2014) 80–86. [61] L.S. Wong, F. Khan, J. Micklefield, Selective Covalent Protein Immobilization: Strategies and Applications, Chem. Rev. 109 (2009) 4025–4053. [62] X.F. Zhang, Y. Duan, X. Zeng, Improved performance of recombinant protein A mobilized on agarose beads by site-specific conjugation, ACS Omega 2 (2017) 1731–1737. [63] N. Tajima, M. Takai, K. Ishihara, Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity, Anal. Chem. 83 (2011) 1969–1976. [64] H.M. Yang, R.M. Bao, Y.Z. Cheng, J.B. Tang, Site-specific covalent attachment of an engineered Z-domain onto a solid matrix: An efficient platform for 3D IgG immobilization, Anal. Chim. Acta 872 (2015) 1–6. [65] F. Rusmini, Z.Y. Zhong, J. Feijen, Protein immobilization strategies for protein biochips, Biomacromolecules 8 (2007) 1775–1789. [66] K. Hernandez, R. Fernandez-Lafuente, Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance, Enzyme Microb. Tech. 48 (2011) 107–122. [67] C. Garcia-Galan, A. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues, Potential of different enzyme immobilization strategies to improve enzyme performance, Adv. Synth. Catal. 353 (2011) 2885–2904. [68] M.E. Wiseman, C.W. Frank, Antibody adsorption and orientation on hydrophobic surfaces, Langmuir 28 (2012) 1765–1774. [69] H.O. Yang, P.V. Gurgel, R.G. Carbonell, Purification of human immunoglobulin G via Fc-specific small peptide ligand affinity chromatography, J. Chromatogr. A 1216 (2009) 910–918. [70] Y. Luo, Q. Zhang, S. Yao, D. Lin, Adsorption behaviors of avian immunoglobulins and purification of immunoglobulin Y from chicken serum with mixed-mode resins, Chin. J. Chem. Eng. 27 (2019) 514–518. [71] N. Kruljec, T. Bratkovic, Alternative affinity ligands for immunoglobulins, Bioconjug. Chem. 28 (2017) 2009–2030. [72] G.F. Zhao, X.Y. Dong, Y. Sun, Ligands for mixed-mode protein chromatography: Principles, characteristics and design, J. Biotechnol. 144 (2009) 3–11. [73] Y.M. Fang, D.Q. Lin, S.J. Yao, Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification, J. Chromatogr. A 1571 (2018) 1–15. [74] E. Carredano, H. Baumann, A. Gronberg, N. Norrman, G. Glad, J.Y. Zou, O. Ersoy, E. Steensma, A. Axen, A novel and conserved pocket of human kappaFab fragments: Design, synthesis, and verification of directed affinity ligands, Protein Sci. 13 (2004) 1476–1488. [75] S. Chen, T. Liu, R. Yang, D. Lin, S. Yao, Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption, Front. Chem. Sci. Eng. 13 (2019) 70–79. [76] H. Yang, P.V. Gurgel, R.G. Carbonell, Hexamer peptide affinity resins that bind the Fc region of human immunoglobulin G, J. Pept. Res. 66 (2005) 120–137. [77] W.W. Zhao, F.F. Liu, Q.H. Shi, Y. Sun, Octapeptide-based affinity chromatography of human immunoglobulin G: Comparisons of three different ligands, J. Chromatogr. A 1359 (2014) 100–111. [78] X. Zou, Q. Zhang, H. Lu, D. Lin, S. Yao, Development of a hybrid biomimetic ligand with high selectivity and mild elution for antibody purification, Chem. Eng. J. 368 (2019) 678–686. [79] D.G. Wei, X.L. Jiang, L. Zhou, J. Chen, Z. Chen, C. He, K. Yang, Y. Liu, J.F. Pei, L.H. Lai, Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching, J. Med. Chem. 51 (2008) 7882–7888. [80] B. Huang, F.F. Liu, X.Y. Dong, Y. Sun, Molecular mechanism of the affinity interactions between protein A and human innmunoglobulin G1 revealed by molecular simulations, J. Phys. Chem. B 115 (2011) 4168–4176. [81] W.W. Zhao, F.F. Liu, Q.H. Shi, X.Y. Dong, Y. Sun, Biomimetic design of affinity peptide ligands for human IgG based on protein A-IgG complex, Biochem. Eng. J. 88 (2014) 1–11. [82] O. Trott, A.J. Olson, Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455–461. [83] W.W. Zhao, Q.H. Shi, Y. Sun, FYWHCLDE-based affinity chromatography of IgG: Effect of ligand density and purifications of human IgG and monoclonal antibody, J. Chromatogr. A 1355 (2014) 107–114. [84] Y.Y. Li, X.D. Liu, X.Y. Dong, L. Zhang, Y. Sun, Biomimetic design of affinity peptide ligand for capsomere of virus-like particle, Langmuir 30 (2014) 8500–8508. [85] L. Zhang, Y. Sun, Biomimetic design of platelet adhesion inhibitors to block integrin alpha 2 beta 1-collagen interactions: I. Construction of an affinity binding model, Langmuir 30 (2014) 4725–4733. [86] P. Arosio, S. Rima, M. Morbidelli, Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: From oligomers to larger aggregates, Pharm. Res. 30 (2013) 641–654. [87] R.K. Brummitt, D.P. Nesta, L. Chang, S.F. Chase, T.M. Laue, C.J. Roberts, Nonnative aggregation of an IgG1 antibody in acidic conditions: Part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates, J. Pharm. Sci. 100 (2011) 2087–2103. [88] W.W. Zhao, Q.H. Shi, Y. Sun, Dual-ligand affinity systems with octapeptide ligands for affinity chromatography of hIgG and monoclonal antibody, J. Chromatogr. A 1369 (2014) 64–72. [89] H.O. Yang, P.V. Gurgel, D.K. Williams, B.G. Bobay, J. Cavanagh, D.C. Muddiman, R.G. Carbonell, Binding site on human immunoglobulin G for the affinity ligand HWRGWV, J. Mol. Recognit. 23 (2010) 271–282. [90] A.D. Naik, S. Menegatti, P.V. Gurgel, R.G. Carbonell, Performance of hexamer peptide ligands for affinity purification of immunoglobulin G from commercial cell culture media, J. Chromatogr. A 1218 (2011) 1691–1700. [91] G. Fassina, A. Verdoliva, M.R. Odierna, M. Ruvo, G. Cassini, Protein A mimetic peptide ligand for affinity purification of antibodies, J. Mol. Recognit. 9 (1996) 564–569. [92] R. Hahn, P. Bauerhansl, K. Shimahara, C. Wizniewski, A. Tscheliessnig, A. Jungbauer, Comparison of protein A affinity sorbents II. Mass transfer properties, J. Chromatogr. A 1093 (2005) 98–110. [93] J. Deisenhofer, Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution, Biochemistry 20 (1981) 2361–2370. [94] R. Huber, J. Deisenhofer, P.M. Colman, M. Matsushima, W. Palm, Crystallographic structure studies of an IgG molecule and an Fc fragment, Nature 264 (1976) 415–420. [95] M. Ultsch, A. Braisted, H.R. Maun, C. Eigenbrot, 3-2-1: Structural insights from stepwise shrinkage of a three-helix Fc-binding domain to a single helix, Protein Eng. Des. Sel. 30 (2017) 619–625. [96] N. Goel, S. Stephens, Certolizumab pegol, Mabs 2 (2010) 137–147. [97] A. Beck, J.M. Reichert, Approval of the first biosimilar antibodies in Europe A major landmark for the biopharmaceutical industry, Mabs 5 (2013) 621–623. [98] A. Beck, Biosimilar, biobetter and next generation therapeutic antibodies, Mabs 3 (2011) 107–110. [99] A. Nascimento, I.F. Pinto, V. Chu, M. Raquel Aires-Barros, J.P. Conde, A.M. Azevedo, Studies on the purification of antibody fragments, Sep. Purif. Technol. 195 (2018) 388–397. [100] H.Y. Wang, Y. Sun, S.L. Zhang, J. Luo, Q.H. Shi, Fabrication of high-capacity cation-exchangers for protein chromatography by atom transfer radical polymerization, Biochem. Eng. J. 113 (2016) 19–29. [101] A.M. Lenhoff, Protein adsorption and transport in polymer-functionalized ion-exchangers, J. Chromatogr. A 1218 (2011) 8748–8759. [102] Y.M. Fang, H.Y. Zhu, D.Q. Lin, S.J. Yao, A novel dextran-grafted tetrapeptide resin for antibody purification, J. Sep. Sci. 43 (2020) 3816–3823. [103] J. Zdarta, A.S. Meyer, T. Jesionowski, M. Pinelo, A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility, Catalysts 8 (2018) 92. [104] Z. Wang, Y. Shen, Q.H. Shi, Y. Sun, Insights into the molecular structure of immobilized protein A ligands on dextran-coated nanoparticles: Comprehensive spectroscopic investigation, Biochem. Eng. J.146(2019) 20–30. [105] H. Xu, X.B. Zhao, C. Grant, J.R. Lu, D.E. Williams, J. Penfold, Orientation of a monoclonal antibody adsorbed at the solid/solution interface: A combined study using atomic force microscopy and neutron reflectivity, Langmuir 22 (2006) 6313–6320. [106] J.G. Vilhena, A.C. Dumitru, E.T. Herruzo, J.I. Mendieta-Moreno, R. Garcia, P.A. Serena, R. Perez, Adsorption orientations and immunological recognition of antibodies on graphene, Nanoscale 8 (2016) 13463–13475. |