中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 244-254.DOI: 10.1016/j.cjche.2020.11.013
• Biomedical Engineering • 上一篇 下一篇
Yifan Xing1, Junyu Liu1, Xiaojie Guo1, Haipeng Liu1, Wen Zeng1, Yi Wang1, Chong Zhang1,2, Yuan Lu1, Dong He3, Shaohua Ma4, Yonghong He4, Xin-Hui Xing1,2,4,5
收稿日期:
2020-10-22
修回日期:
2020-11-24
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Xin-Hui Xing
基金资助:
Yifan Xing1, Junyu Liu1, Xiaojie Guo1, Haipeng Liu1, Wen Zeng1, Yi Wang1, Chong Zhang1,2, Yuan Lu1, Dong He3, Shaohua Ma4, Yonghong He4, Xin-Hui Xing1,2,4,5
Received:
2020-10-22
Revised:
2020-11-24
Online:
2021-02-28
Published:
2021-05-15
Contact:
Xin-Hui Xing
Supported by:
摘要: In recent years, organoid technology, i.e., in vitro three-dimensional (3D) tissue culture, has attracted increasing attention in biomedical engineering. Organoids are cell complexes induced by differentiation of stem cells or organ-progenitor cells in vitro using 3D culture technology. They can replicate the key structural and functional characteristics of the target organs in vivo. With the opening up of this new field of health engineering, there is a need for engineering-system approaches to the production, control, and quantitative analysis of organoids and their microenvironment. Traditional organoid technology has limitations, including lack of physical and chemical microenvironment control, high heterogeneity, complex manual operation, imperfect nutritional supply system, and lack of feasible online analytical technology for the organoids. The introduction of microfluidic chip technology into organoids has overcome many of these limitations and greatly expanded the scope of applications. Engineering organoid microfluidic system has become an interdisciplinary field in biomedical and health engineering. In this review, we summarize the development and culture system of organoids, discuss how microfluidic technology has been used to solve the main technical challenges in organoid research and development, and point out new opportunities and prospects for applications of organoid microfluidic system in drug development and screening, food safety, precision medicine, and other biomedical and health engineering fields.
Yifan Xing, Junyu Liu, Xiaojie Guo, Haipeng Liu, Wen Zeng, Yi Wang, Chong Zhang, Yuan Lu, Dong He, Shaohua Ma, Yonghong He, Xin-Hui Xing. Engineering organoid microfluidic system for biomedical and health engineering: A review[J]. 中国化学工程学报, 2021, 29(2): 244-254.
Yifan Xing, Junyu Liu, Xiaojie Guo, Haipeng Liu, Wen Zeng, Yi Wang, Chong Zhang, Yuan Lu, Dong He, Shaohua Ma, Yonghong He, Xin-Hui Xing. Engineering organoid microfluidic system for biomedical and health engineering: A review[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 244-254.
[1] Method of the Year 2017, Organoids, Nat. Method. 15 (1) (2018) 1. [2] B.A. Purnell, M. Lavine, Approximating Organs, Science 364 (6444) (2019) 946–947. [3] M.N. Shahbazi, E.D. Siggia, M. Zernicka-Goetz, Self-organization of stem cells into embryos: A window on early mammalian development, Science 364 (6444) (2019) 948–951. [4] D. Tuveson, H. Clevers, Cancer modeling meets human organoid technology, Science 364 (6444) (2019) 952–955. [5] T. Takebe, J.M. Wells, Organoids by design, Science 364 (6444) (2019) 956–959. [6] S.E. Park, A. Georgescu, D. Huh, Organoids-on-a-chip, Science 364 (6444) (2019) 960–965. [7] M.A. Lancaster, J.A. Knoblich, Organogenesis in a dish: Modeling development and disease using organoid technologies, Science 345 (6194) (2014), 1247125:1–7. [8] T. Sato, R.G. Vries, H.J. Snippert, M. van de Wetering, N. Barker, D.E. Stange, J.H. van Es, A. Abo, P. Kujala, P.J. Peters, H. Clevers, Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature 459 (7244) (2009) 262–265. [9] K.S. Carmon, X. Gong, Q. Lin, A. Thomas, Q. Liu, R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling, Proc. Natl. Acad. Sci. USA 108 (28) (2011) 11452–11457. [10] W. de Lau, N. Barker, T.Y. Low, B.K. Koo, V.S.W. Li, H. Teunissen, P. Kujala, A. Haegebarth, P.J. Peters, M. van de Wetering, D.E. Stange, J.E. van Es, D. Guardavaccaro, R.B.M. Schasfoort, Y. Mohri, K. Nishimori, S. Mohammed, A.J. R. Heck, H. Clevers, Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling, Nature 476 (7360) (2011) 293–297. [11] S.R. Yui, T. Nakamura, T. Sato, Y. Nemoto, T. Mizutani, X. Zheng, S. Ichinose, T. Nagaishi, R. Okamoto, K. Tsuchiya, H. Clevers, M. Watanabe, Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell, Nat. Med. 18 (4) (2012) 618–623. [12] M. Matano, S. Date, M. Shimokawa, A. Takano, M. Fujii, Y. Ohta, T. Watanabe, T. Kanai, T. Sato, Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids, Nat. Med. 21 (3) (2015) 256–262. [13] P. Jung, T. Sato, A. Merlos-Suarez, F.M. Barriga, M. Iglesias, D. Rossell, H. Auer, M. Gallardo, M.A. Blasco, E. Sancho, H. Clevers, E. Batlle, Isolation and in vitro expansion of human colonic stem cells, Nat. Med. 17 (10) (2011) 1225–1227. [14] T. Sato, D.E. Stange, M. Ferrante, R.G.J. Vries, J.H. van Es, S. van den Brink, W.J. van Houdt, A. Pronk, J. van Gorp, P.D. Siersema, H. Clevers, Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium, Gastroenterology 141 (5) (2011) 1762–1772. [15] M. Huch, H. Gehart, R. van Boxtel, K. Hamer, F. Blokzijl, M.M.A. Verstegen, E. Ellis, M. van Wenum, S.A. Fuchs, J. de Ligt, M. van de Wetering, N. Sasaki, S.J. Boers, H. Kemperman, J. de Jonge, J.N.M. Ijzermans, E.E.S. Nieuwenhuis, R. Hoekstra, S. Strom, R.R.G. Vries, L.J.W. van der Laan, E. Cuppen, H. Clevers, Long-term culture of genome-stable bipotent stem cells from adult human liver, Cell 160 (1–2) (2015) 299–312. [16] T.A. Longmire, L. Ikonomou, F. Hawkins, C. Christodoulou, Y.X. Cao, J.C. Jean, L. W. Kwok, H.M. Mou, J. Rajagopal, S.S. Shen, A.A. Dowton, M. Serra, D.J. Weiss, M.D. Green, H.W. Snoeck, M.I. Ramirez, D.N. Kotton, Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells, Cell Stem Cell 10 (4) (2012) 398–411. [17] A.P. Wong, C.E. Bear, S. Chin, P. Pasceri, T.O. Thompson, L.J. Huan, F. Ratjen, J. Ellis, J. Rossant, Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein, Nat. Biotechnol. 30 (9) (2012) 876–882. [18] S.F. Boj, C.I. Hwang, L.A. Baker, I.I.C. Chio, D.D. Engle, V. Corbo, M. Jager, M. Ponz-Sarvise, H. Tiriac, M.S. Spector, A. Gracanin, T. Oni, K.H. Yu, R. van Boxtel, M. Huch, K.D. Rivera, J.P. Wilson, M.E. Feigin, D. Ohlund, A. Handly-Santana, C. M. Ardito-Abraham, M. Ludwig, E. Elyada, B. Alagesan, G. Biffi, G.N. Yordanov, B. Delcuze, B. Creighton, K. Wright, Y. Park, F.H.M. Morsink, I.Q. Molenaar, I.H. B. Rinkes, E. Cuppen, Y. Hao, Y. Jin, I.J. Nijman, C. Iacobuzio-Donahue, S.D. Leach, D.J. Pappin, M. Hammell, D.S. Klimstra, O. Basturk, R.H. Hruban, G.J. Offerhaus, R.G.J. Vries, H. Clevers, D.A. Tuveson, Organoid models of human and mouse ductal pancreatic cancer, Cell 160 (1–2) (2015) 324–338. [19] W.R. Karthaus, P.J. Iaquinta, J. Drost, A. Gracanin, R. Van Boxtel, J. Wongvipat, C.M. Dowling, D. Gao, H. Begthel, N. Sachs, R.G.J. Vries, E. Cuppen, Y. Chen, C.L. Sawyers, H.C. Clevers, Identification of multipotent luminal progenitor cells in human prostate oganoid cultures, Cell 159 (1) (2014) 163–175. [20] C.W. Chua, M. Shibata, M. Lei, R. Toivanen, L.J. Barlow, S.K. Bergren, K.K. Badani, J.M. Mc Kiernan, M.C. Benson, H. Hibshoosh, M.M. Shen, Single luminal epithelial progenitors can generate prostate organoids in culture, Nat. Cell Biol. 16 (10) (2014) 951–961. [21] S. Bartfeld, T. Bayram, M. van de Wetering, M. Huch, H. Begthel, P. Kujala, R. Vries, P.J. Peters, H. Clevers, In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection, Gastroenterology 148 (1) (2015) 126–136. [22] M. Kessler, K. Hoffmann, V. Brinkmann, O. Thieck, S. Jackisch, B. Toelle, H. Berger, H.J. Mollenkopf, M. Mangler, J. Sehouli, C. Fotopoulou, T.F. Meyer, The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids, Nat. Commun. 6 (8989) (2015) 1–11. [23] W.W. Ren, B.C. Lewandowski, J. Watson, E. Aihara, K. Iwatsuki, A.A. Bachmanov, R.F. Margolskee, P.H. Jiang, Single Lgr5-or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo, Proc. Natl. Acad. Sci. USA 111 (46) (2014) 16401–16406. [24] M. Maimets, C. Rocchi, R. Bron, S. Pringle, J. Kuipers, B.N.G. Giepmans, R.G.J. Vries, H. Clevers, G. de Haan, R. van Os, R.P. Coppes, Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals, Stem Cell Rep. 6 (1) (2016) 150–162. [25] A.D. DeWard, J. Cramer, E. Lagasse, Cellular heterogeneity in the mouse esophagus emplicates the presence of a nonquiescent epithelial stem cell population, Cell Rep. 9 (2) (2014) 701–711. [26] M.Y. Turco, L. Gardner, J. Hughes, T. Cindrova-Davies, M.J. Gomez, L. Farrell, M. Hollinshead, S.G.E. Marsh, J.J. Brosens, H.O. Critchley, B.D. Simons, M. Hemberger, B.K. Koo, A. Moffett, G.J. Burton, Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium, Nat. Cell Biol. 19 (5) (2017) 568–577. [27] N. Sachs, J. de Ligt, O. Kopper, E. Gogola, G. Bounova, F. Weeber, A.V. Balgobind, K. Wind, A. Gracanin, H. Begthel, J. Korving, R. van Boxtel, A.A. Duarte, D. Lelieveld, A. van Hoeck, R.F. Ernst, F. Blokzijl, I.J. Nijman, M. Hoogstraat, M. van de Ven, D.A. Egan, V. Zinzalla, J. Moll, S.F. Boj, E.E. Voest, L. Wessels, P.J. van Diest, S. Rottenberg, R.G.J. Vries, E. Cuppen, H. Clevers, A living biobank of breast cancer organoids captures disease heterogeneity, Cell 172 (1–2) (2018) 373–386. [28] S. Mahesh, S.H. Au, M.D. Chamberlain, Hepatic organoids for microfluidic drug screening, Lab Chip 14 (2014) 3290–3299. [29] A.M. Hopkins, E. DeSimone, K. Chwalek, D.L. Kaplan, 3D in vitro modeling of the central nervous system, Prog. NeuroBiol. 125 (2015) 1–25. [30] Y. Sasai, Next-generation regenerative medicine: Organogenesis from stem cells in 3D culture, Cell Stem Cell 12 (5) (2013) 520–530. [31] M. Vinci, S. Gowan, F. Boxall, L. Patterson, M. Zimmermann, W. Court, C. Lomas, M. Mendiola, D. Hardisson, S.A. Eccles, Advances in establishment and analysis of three-dimensional tumor spheroid-based functional, BMC Biol. 20 (2012) 212. [32] S.N. Bhatia, D.E. Ingber, Microfluidic organs-on-chips, Nat. Biotechnol. 32 (8) (2014) 760–772. [33] N. Shanks, R. Greek, J. Greek, Are animal models predictive for humans?, Philos. Ethics. Humanit. Med. 4 (2) (2009) 1–20. [34] N. Picollet-D’hahan, M.E. Dolega, D. Freida, D.K. Martin, X. Gidrol, Deciphering cell intrinsic properties: A key issue for robust organoid production, Trends Biotechnol. 35 (11) (2017) 1035–1048. [35] R. Montesano, Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors, Cell 66 (4) (1991) 697–711. [36] C.H. Xu, M.S. Inokuma, J. Denham, K. Golds, P. Kundu, J.D. Gold, M.K. Carpenter, Feeder-free growth of undifferentiated human embryonic stem cells, Nat. Biotechnol. 19 (10) (2001) 971–974. [37] H. Clevers, Modeling development and disease with organoids, Cell 165 (7) (2016) 1586–1597. [38] A. Fatehullah, S.H. Tan, N. Barker, Organoids as an in vitro model of human development and disease, Nat. Cell Biol. 18 (3) (2016) 246–254. [39] J.F. Dekkers, C.L. Wiegerinck, H.R. de Jonge, I. Bronsveld, H.M. Janssens, K.M. de Winter-de Groot, A.M. Brandsma, N.W.M. de Jong, M.J.C. Bijvelds, B.J. Scholte, E.E.S. Nieuwenhuis, S. van den Brink, H. Clevers, C.K. van der Ent, S. Middendorp, J.M. Beekman, A functional CFTR assay using primary cystic fibrosis intestinal organoids, Nat. Med. 19 (7) (2013) 939–945. [40] L. Cao, J.D. Gibson, S. Miyamoto, V. Sail, R. Verma, D.W. Rosenberg, C.E. Nelson, C. Giardina, Intestinal lineage commitment of embryonic stem cells, Differentiation 81 (1) (2011) 1–10. [41] L. Cao, A. Kuratnik, W.L. Xu, J.D. Gibson, F. Kolling, E.R. Falcone, M. Ammar, M. D. Van Heyst, D.L. Wright, C.E. Nelson, C. Giardina, Development of intestinal organoids as tissue surrogates: cell composition and the epigenetic control of differentiation, Mol. Carcinogen. 54 (3) (2015) 189–202. [42] J. Drost, R.H. van Jaarsveld, B. Ponsioen, C. Zimberlin, R. van Boxtel, A. Buijs, N. Sachs, R.M. Overmeer, G.J. Offerhaus, H. Begthel, J. Korving, M. van de Wetering, G. Schwank, M. Logtenberg, E. Cuppen, H.J. Snippert, J.P. Medema, G.J.P.L. Kops, H. Clevers, Sequential cancer mutations in cultured human intestinal stem cells, Nature 521 (7550) (2015) 43–47. [43] S.R. Finkbeiner, D.R. Hill, C.H. Altheim, P.H. Dedhia, M.J. Taylor, Y.H. Tsai, A.M. Chin, M.M. Mahe, C.L. Watson, J.J. Freeman, R. Nattiv, M. Thomson, O.D. Klein, N.F. Shroyer, M.A. Helmrath, D.H. Teitelbaum, P.J. Dempsey, J.R. Spence, Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo, Stem Cell Rep. 4 (6) (2015) 1140–1155. [44] S.R. Finkbeiner, X.L. Zeng, B. Utama, R.L. Atmar, N.F. Shroyer, M.K. Estes, Stem cell-derived human intestinal organoids as an infection model for rotaviruses, Mbio 3 (4) (2012) e00159. [45] J.L. Forbester, D. Goulding, L. Vallier, N. Hannan, C. Hale, D. Pickard, S. Mukhopadhyay, G. Dougan, Interaction of salmonella enterica serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells, Infect. Immun. 83 (7) (2015) 2926–2934. [46] R.P. Fordham, S. Yui, N.R.F. Hannan, C. Soendergaard, A. Madgwick, P.J. Schweiger, O.H. Nielsen, L. Vallier, R.A. Pedersen, T. Nakamura, M. Watanabe, K.B. Jensen, Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury, Cell Stem Cell 13 (6) (2013) 734–744. [47] M. Fukuda, T. Mizutani, W. Mochizuki, T. Matsumoto, K. Nozaki, Y. Sakamaki, S. Ichinose, Y. Okada, T. Tanaka, M. Watanabe, T. Nakamura, Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon, Gene. Dev. 28 (16) (2014) 1752–1757. [48] A.D. Gracz, I.A. Williamson, K.C. Roche, M.J. Johnston, F.C. Wang, Y.L. Wang, P. J. Attayek, J. Balowski, X.F. Liu, R.J. Laurenza, L.T. Gaynor, C.E. Sims, J.A. Galanko, L.H. Li, N.L. Allbritton, S.T. Magness, A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis, Nat. Cell Biol. 17 (3) (2015) 340–349. [49] N. Horita, K. Tsuchiya, R. Hayashi, K. Fukushima, S. Hibiya, M. Fukuda, Y. Kano, T. Mizutani, Y. Nemoto, S. Yui, R. Okamoto, T. Nakamura, M. Watanabe, Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt, Biochem. Biophys. Res. Commun. 454 (4) (2014) 493–499. [50] X.N. Li, L. Nadauld, A. Ootani, D.C. Corney, R.K. Pai, O. Gevaert, M.A. Cantrell, P. G. Rack, J.T. Neal, C.W.M. Chan, T. Yeung, X. Gong, J. Yuan, J. Wilhelmy, S. Robine, L.D. Attardi, S.K. Plevritis, K.E. Hung, C.Z. Chen, H.P. Ji, C.J. Kuo, Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture, Nat. Med. 20 (7) (2014) 769–777. [51] K.W. McCracken, J.C. Howell, J.M. Wells, J.R. Spence, Generating human intestinal tissue from pluripotent stem cells in vitro, Nat. Protoc. 6 (12) (2011) 1920–1928. [52] R.C. Mustata, T. Van Loy, A. Lefort, F. Libert, S. Strollo, G. Vassart, M.I. Garcia, Lgr4 is required for Paneth cell differentiation and maintenance of intestinal stem cells ex vivo, EMBO Rep. 12 (6) (2011) 558–564. [53] R.C. Mustata, G. Vasile, V. Fernandez-Vallone, S. Strollo, A. Lefort, F. Libert, D. Monteyne, D. Perez-Morga, G. Vassart, M.I. Garcia, Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium, Cell Rep. 5 (2) (2013) 421–432. [54] A. Ootani, X.N. Li, E. Sangiorgi, Q.T. Ho, H. Ueno, S. Toda, H. Sugihara, K. Fujimoto, I.L. Weissman, M.R. Capecchi, C.J. Kuo, Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche, Nat. Med. 15 (6) (2009) 701–706. [55] T. Sato, J.H. van Es, H.J. Snippert, D.E. Stange, R.G. Vries, M. van den Born, N. Barker, N.F. Shroyer, M. van de Wetering, H. Clevers, Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts, Nature 469 (7330) (2011) 415–418. [56] J.R. Spence, C.N. Mayhew, S.A. Rankin, M.F. Kuhar, J.E. Vallance, K. Tolle, E.E. Hoskins, V.V. Kalinichenko, S.I. Wells, A.M. Zorn, N.F. Shroyer, J.M. Wells, Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro, Nature 470 (7332) (2011) 105–109. [57] J.H. van Es, T. Sato, M. van de Wetering, A. Lyubimova, A.N.Y. Nee, A. Gregorieff, N. Sasaki, L. Zeinstra, M. van den Born, J. Korving, A.C.M. Martens, N. Barker, A. van Oudenaarden, H. Clevers, Dll1(+) secretory progenitor cells revert to stem cells upon crypt damage, Nat. Cell Biol. 14 (10) (2012) 1099– 1104. [58] X. Wang, Y. Yamamoto, L.H. Wilson, T. Zhang, B.E. Howitt, M.A. Farrow, F. Kern, G. Ning, Y. Hong, C.C. Khor, B. Chevalier, D. Bertrand, L.Y. Wu, N. Nagarajan, F.A. Sylvester, J.S. Hyams, T. Devers, R. Bronson, D.B. Lacy, K.Y. Ho, C.P. Crum, F. McKeon, W. Xian, Cloning and variation of ground state intestinal stem cells, Nature 522 (7555) (2015) 173–178. [59] C.L. Watson, M.M. Mahe, J. Munera, J.C. Howell, N. Sundaram, H.M. Poling, J.I. Schweitzer, J.E. Vallance, C.N. Mayhew, Y. Sun, G. Grabowski, S.R. Finkbeiner, J.R. Spence, N.F. Shroyer, J.M. Wells, M.A. Helmrath, An in vivo model of human small intestine using pluripotent stem cells, Nat. Med. 20 (11) (2014) 1310–1314. [60] X.L. Yin, H.F. Farin, J.H. van Es, H. Clevers, R. Langer, J.M. Karp, Nicheindependent high-purity cultures of Lgr5(+) intestinal stem cells and their progeny, Nat. Methods 11 (1) (2014) 106–112. [61] Y.G. Zhang, S. Wu, Y. Xia, J. Sun, Salmonella-infected crypt-derived intestinal organoid culture system for host–bacterial interactions, Physiolog. Rep. 2 (9) (2014) e12147. [62] R. Okamoto, M. Watanabe, Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease, J. Gastroenterol. 51 (1) (2016) 11– 21. [63] M. van de Wetering, H.E. Francies, J.M. Francis, G. Bounova, F. Iorio, A. Pronk, W. van Houdt, J. van Gorp, A. Taylor-Weiner, L. Kester, A. McLaren-Douglas, J. Blokker, S. Jaksani, S. Bartfeld, R. Volckman, P. van Sluis, V.S.W. Li, S. Seepo, C. S. Pedamallu, K. Cibulskis, S.L. Carter, A. McKenna, M.S. Lawrence, L. Lichtenstein, C. Stewart, J. Koster, R. Versteeg, A. van Oudenaarden, J. SaezRodriguez, R.G.J. Vries, G. Getz, L. Wessels, M.R. Stratton, U. McDermott, M. Meyerson, M.J. Garnett, H. Clevers, Prospective derivation of a lving organoid biobank of colorectal cancer patients, Cell 161 (4) (2015) 933–994. [64] M.J. Mondrinos, P.L. Jones, C.M. Finck, P.I. Lelkes, Engineering De Novo assembly of fetal pulmonary organoids, Tissue Eng. PT. A 20 (21–22) (2014) 2892–2907. [65] M.J. Mondrinos, S. Koutzaki, E. Jiwanmall, M.Y. Li, J.P. Dechadarevian, P.I. Lelkes, C.M. Finck, Engineering three-dimensional pulmonary tissue constructs, Tissue Eng. 12 (4) (2006) 717–728. [66] B.R. Dye, D.R. Hill, M.A.H. Ferguson, Y.H. Tsai, M.S. Nagy, R. Dyal, J.M. Wells, C. N. Mayhew, R. Nattiv, O.D. Klein, E.S. White, G.H. Deutsch, J.R. Spence, In vitro generation of human pluripotent stem cell derived lung organoids, eLife 4 (2015) e05098. [67] M. Huch, P. Bonfanti, S.F. Boj, T. Sato, C.J.M. Loomans, M. van de Wetering, M. Sojoodi, V.S.W. Li, J. Schuijers, A. Gracanin, F. Ringnalda, H. Begthel, K. Hamer, J. Mulder, J.H. van Es, E. de Koning, R.G.J. Vries, H. Heimberg, H. Clevers, Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis, EMBO J. 32 (20) (2013) 2708–2721. [68] C. Greggio, F. De Franceschi, M. Figueiredo-Larsen, S. Gobaa, A. Ranga, H. Semb, M. Lutolf, A. Grapin-Botton, Artificial three-dimensional niches deconstruct pancreas development in vitro, Development 140 (21) (2013) 4452–4462. [69] M. Huch, C. Dorrell, S.F. Boj, J.H. van Es, V.S.W. Li, M. van de Wetering, T. Sato, K. Hamer, N. Sasaki, M.J. Finegold, A. Haft, R.G. Vries, M. Grompe, H. Clevers, In vitro expansion of single Lgr5(+) liver stem cells induced by Wnt-driven regeneration, Nature 494 (7436) (2013) 247–250. [70] T. Takebe, K. Sekine, M. Enomura, H. Koike, M. Kimura, T. Ogaeri, R.R. Zhang, Y. Ueno, Y.W. Zheng, N. Koike, S. Aoyama, Y. Adachi, H. Taniguchi, Vascularized and functional human liver from an iPSC-derived organ bud transplant, Nature 499 (7459) (2013) 481–484. [71] F. Sampaziotis, M.C. de Brito, P. Madrigal, A. Bertero, K. Saeb-Parsy, F.A.C. Soares, E. Schrumpf, E. Melum, T.H. Karlsen, J.A. Bradley, W.T.H. Gelson, S. Davies, A. Baker, A. Kaser, G.J. Alexander, N.R.F. Hannan, L. Vallier, Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation, Nat. Biotechnol. 33 (8) (2015) 845–852. [72] M. Ogawa, S. Ogawa, C.E. Bear, S. Ahmadi, S. Chin, B. Li, M. Grompe, G. Keller, B.M. Kamath, A. Ghanekar, Directed differentiation of cholangiocytes from human pluripotent stem cells, Nat. Biotechnol. 33 (8) (2015) 853–861. [73] T. Takebe, R.R. Zhang, H. Koike, M. Kimura, E. Yoshizawa, M. Enomura, N. Koike, K. Sekine, H. Taniguchi, Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant, Nat. Protoc. 9 (2) (2014) 396–409. [74] N. Barker, M. Huch, P. Kujala, M. van de Wetering, H.J. Snippert, J.H. van Es, T. Sato, D.E. Stange, H. Begthel, M. van den Born, E. Danenberg, S. van den Brink, J. Korving, A. Abo, P.J. Peters, N. Wright, R. Poulsom, H. Clevers, Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro, Cell Stem Cell 6 (1) (2010) 25–36. [75] D.E. Stange, B.K. Koo, M. Huch, G. Sibbel, O. Basak, A. Lyubimova, P. Kujala, S. Bartfeld, J. Koster, J.H. Geahlen, P.J. Peters, J.H. van Es, M. van de Wetering, J.C. Mills, H. Clevers, Differentiated Troy(+) chief cells act as reserve stem cells to generate all lineages of the stomach epithelium, Cell 155 (2) (2013) 357–368. [76] P. Schlaermann, B. Toelle, H. Berger, S.C. Schmidt, M. Glanemann, J. Ordemann, S. Bartfeld, H.J. Mollenkopf, T.F. Meyer, A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro, Gut 65 (2) (2016) 202–213. [77] T.K. Noguchi, N. Ninomiya, M. Sekine, S. Komazaki, P.C. Wang, M. Asashima, A. Kurisaki, Generation of stomach tissue from mouse embryonic stem cells, Nat. Cell Biol. 17 (8) (2015) 984–U62. [78] K.W. McCracken, E.M. Cata, C.M. Crawford, K.L. Sinagoga, M. Schumacher, B.E. Rockich, Y.H. Tsai, C.N. Mayhew, J.R. Spence, Y. Zavros, J.M. Wells, Modelling human development and disease in pluripotent stem-cell-derived gastric organoids, Nature 516 (7531) (2014) 400–406. [79] L.E. Wroblewski, M.B. Piazuelo, R. Chaturvedi, M. Schumacher, E. Aihara, R. Feng, J.M. Noto, A. Delgado, D.A. Israel, Y. Zavros, M.H. Montrose, N. Shroyer, P. Correa, K.T. Wilson, R.M. Peek, Helicobacter pylori targets cancerassociated apical-junctional constituents in gastroids and gastric epithelial cells, Gut 64 (5) (2015) 720–730. [80] N. Bertaux-Skeirik, R. Feng, M.A. Schumacher, J. Li, M.M. Mahe, A.C. Engevik, J. E. Javier, R.M. Peek, K. Ottemann, V. Orian-Rousseau, G.P. Boivin, M.A. Helmrath, Y. Zavros, CD44 plays a functional role in Helicobacter pyloriinduced epithelial cell proliferation, Plos Pathog. 11 (2) (2015) e1004663. [81] M.A. Schumacher, E. Aihara, R. Feng, A. Engevik, N.F. Shroyer, K.M. Ottemann, R.T. Worrell, M.H. Montrose, R.A. Shivdasani, Y. Zavros, The use of murinederived fundic organoids in studies of gastric physiology, J. Physiol. Lond. 593 (8) (2015) 1809–1827. [82] T.R. Broda, K.W. McCracken, J.M. Wells, Generation of human antral and fundic gastric organoids from pluripotent stem cells, Nat. Protoc. 14 (1) (2019) 28–50. [83] M. Takasato, P.X. Er, H.S. Chiu, B. Maier, G.J. Baillie, C. Ferguson, R.G. Parton, E. J. Wolvetang, M.S. Roost, S.M.C.D. Lopes, M.H. Little, Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis, Nature 526 (7574) (2015) 564–568. [84] D. Gao, I. Vela, A. Sboner, P.J. Iaquinta, W.R. Karthaus, A. Gopalan, C. Dowling, J.N. Wanjala, E.A. Undvall, V.K. Arora, J. Wongvipat, M. Kossai, S. Ramazanoglu, L.P. Barboza, W. Di, Z. Cao, Q.F. Zhang, I. Sirota, L. Ran, T.Y. MacDonald, H. Beltran, J.M. Mosquera, K.A. Touijer, P.T. Scardino, V.P. Laudone, K.R. Curtis, D.E. Rathkopf, M.J. Morris, D.C. Danila, S.F. Slovin, S.B. Solomon, J.A. Eastham, P. Chi, B. Carver, M.A. Rubin, H.I. Scher, H. Clevers, C.L. Sawyers, Y. Chen, Organoid cultures derived from patients with advanced prostate cancer, Cell 159 (1) (2014) 176–187. [85] E.L. Calderon-Gierszal, G.S. Prins, Directed differentiation of human embryonic stem cells into prostate organoids in vitro and its perturbation by low-dose bisphenol a exposure, Plos One 10 (7) (2015) e0133238. [86] J.I. Sasaki, M. Hashimoto, S. Yamaguchi, Y. Itoh, I. Yoshimoto, T. Matsumoto, S. Imazato, Fabrication of biomimetic bone tissue ssing mesenchymal stem cellderived three-dimensional constructs incorporating endothelial cells, Plos One 10 (6) (2015) e0129266. [87] J. Mariani, M.V. Simonini, D. Palejev, L. Tomasini, G. Coppola, A.M. Szekely, T.L. Horvath, F.M. Vaccarino, Modeling human cortical development in vitro using induced pluripotent stem cells, Proc. Natl. Acad. Sci. USA 109 (31) (2012) 12770–12775. [88] J. Mariani, G. Coppola, P. Zhang, A. Abyzov, L. Provini, L. Tomasini, M. Amenduni, A. Szekely, D. Palejev, M. Wilson, M. Gerstein, E.L. Grigorenko, K. Chawarska, K.A. Pelphrey, J.R. Howe, F.M. Vaccarino, FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum sisorders, Cell 162 (2) (2015) 375–390. [89] M.A. Lancaster, J.A. Knoblich, Generation of cerebral organoids from human pluripotent stem cells, Nat. Protoc. 9 (10) (2014) 2329–2340. [90] J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts, Science 282 (5391) (1998) 1145–1147. [91] K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell 126 (4) (2006) 663–676. [92] Y.Shi,H.Inoue,J.C.Wu,S.Yamanaka,Inducedpluripotentstemcelltechnology: a decade of progress, Nat. Rev. Drug Discov. 16 (2) (2017) 115–130. [93] F. Antonica, D.F. Kasprzyk, R. Opitz, M. Iacovino, X.H. Liao, A.M. Dumitrescu, S. Refetoff, K. Peremans, M. Manto, M. Kyba, S. Costagliola, Generation of functionalthyroidfromembryonicstemcells, Nature491(7422)(2012)66–71. [94] S. Pauklin, L. Vallier, Activin/Nodal signalling in stem cells, Development 142 (4) (2015) 607–619. [95] J.K. Heath, Transcriptional networks and signaling pathways that govern vertebrate intestinal development, Curr. Top. Dev. Biol. 90 (2010) 159–192. [96] M.A. Lancaster, M. Renner, C.A. Martin, D. Wenzel, L.S. Bicknell, M.E. Hurles, T. Homfray, J.M. Penninger, A.P. Jackson, J.A. Knoblich, Cerebral organoids model human brain development and microcephaly, Nature 501 (7467) (2013) 373– 379. [97] H. Suga, T. Kadoshima, M. Minaguchi, M. Ohgushi, M. Soen, T. Nakano, N. Takata, T. Wataya, K. Muguruma, H. Miyoshi, S. Yonemura, Y. Oiso, Y. Sasai, Self-formation of functional adenohypophysis in three-dimensional culture, Nature 480 (7375) (2011) 57–62. [98] K.R. Koehler, A.M. Mikosz, A.I. Molosh, D. Patel, E. Hashino, Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture, Nature 500 (7461) (2013) 217–221. [99] M. Eiraku, N. Takata, H. Ishibashi, M. Kawada, E. Sakakura, S. Okuda, K. Sekiguchi, T. Adachi, Y. Sasai, Self-organizing optic-cup morphogenesis in three-dimensional culture, Nature 472 (7341) (2011) 51–56. [100] P. Kirwan, B. Turner-Bridger, M. Peter, A. Momoh, D. Arambepola, H.P.C. Robinson, F.J. Livesey, Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro, Development 142 (18) (2015) 3178–3187. [101] H. Clevers, K.M. Loh, R. Nusse, An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control, Science 346 (6205) (2014) 1248012. [102] X.C. He, J. Zhang, W.G. Tong, O. Tawfik, J. Ross, D.H. Scoville, Q. Tian, X. Zeng, X. He, L.M. Wiedemann, BMP signaling inhibits intestinal stem cell selfrenewal through suppression of Wnt–b-catenin signaling, Nat. Genet. 36 (10) (2004) 1117–1121. [103] A.P.G. Haramis, H. Begthel, M. van den Born, J. van Es, S. Jonkheer, G.J.A. Offerhaus, H. Clevers, De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine, Science 303 (5664) (2004) 1684–1686. [104] N. Barker, J.H. van Es, J. Kuipers, P. Kujala, M. van den Born, M. Cozijnsen, A. Haegebarth, J. Korving, H. Begthel, P.J. Peters, H. Clevers, Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature 449 (7165) (2007) 1003–1007. [105] N. Lugli, I. Kamileri, A. Keogh, T. Malinka, M.E. Sarris, I. Talianidis, O. Schaad, D. Candinas, D. Stroka, T.D. Halazonetis, R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders, EMBO Rep. 17 (5) (2016) 769–779. [106] J.R. Rock, M.W. Onaitis, E.L. Rawlins, Y. Lu, C.P. Clark, Y. Xue, S.H. Randell, B.L. M. Hogan, Basal cells as stem cells of the mouse trachea and human airway epithelium, Proc. Natl. Acad. Sci. USA 106 (31) (2009) 12771–12775. [107] J.R. Linnemann, H. Miura, L.K. Meixner, M. Irmler, U.J. Kloos, B. Hirschi, H.S. Bartsch, S. Sass, J. Beckers, F.J. Theis, C. Gabka, K. Sotlar, C.H. Scheel, Quantification of regenerative potential in primary human mammary epithelial cells, Development 142 (18) (2015) 3239–3251. [108] E. Aihara, M.M. Mahe, M.A. Schumacher, A.L. Matthis, R. Feng, W.W. Ren, T.K. Noah, T. Matsu-ura, S.R. Moore, C.I. Hong, Y. Zavros, S. Herness, N.F. Shroyer, K. Iwatsuki, P.H. Jiang, M.A. Helmrath, M.H. Montrose, Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid, Sci. Rep. 5 (2015) e17185. [109] H.A. Mccauley, J.M. Wells, Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish, Development 144 (6) (2017) 958–962. [110] Yu Fang, Hunziker Walter, Choudhury Deepak, Micromachines 10 (3) (2019) 1–12. [111] J. Drost, H. Clevers, Organoids in cancer research, Nat. Rev. Cancer 18 (7) (2018) 407–418. [112] M. Huch, J.A. Knoblich, M.P. Lutolf, A. Martinez-Arias, The hope and the hype of organoid research, Development 144 (6) (2017) 938–941. [113] E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research, Nature 507 (7491) (2014) 181–189. [114] Y. Wang, H. Wang, P. Deng, W. Chen, Y. Guo, T. Tao, J. Qin, In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system, Lab Chip 18 (23) (2018) 3606–3616. [115] Y. Zhu, L.Wang, H.Yu, F. Yin,Y. Wang, H. Liu, L. Jiang, J. Qin, In situgeneration of human brain organoids on a micropillar array, Lab Chip 17 (2017) 2941–2950. [116] H.T. Liu, Y.Q. Wang, K.L. Cui, Y.Q. Guo, X. Zhang, J.H. Qin, Advances in hydrogels in organoids and organs-on-a-chip, Adv. Mater. 31 (50) (2019) e1902042. [117] D.W. Scharp, P. Marchetti, Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution, Adv. Drug Deliver. Rev. 67–68 (2014) 35–73. [118] G. Orive, E. Santos, D. Poncelet, R.M. Hernandez, J.L. Pedraz, L.U. Wahlberg, P. De Vos, D. Emerich, Cell encapsulation: technical and clinical advances, Trends Pharmacol. Sci. 36 (8) (2015) 537–546. [119] H.S. Huang, Y. Yu, Y. Hu, X.M. He, O.B. Usta, M.L. Yarmush, Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture, Lab Chip 17 (11) (2017) 1913–1932. [120] H. Liu, Y. Wang, H. Wang, M. Zhao, J. Qin, A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering, Adv. Sci. 7 (11) (2020) e1903739. [121] A. Schepers, C. Li, A. Chhabra, B.T. Seney, S. Bhatia, Engineering a perfusable 3D human liver platform from iPS cells, Lab Chip 16 (14) (2016) 2644–2653. [122] B.J. Jin, S. Battula, N. Zachos, O. Kovbasnjuk, A.S. Verkman, Microfluidics platform for measurement of volume changes in immobilized intestinal enteroids, Biomicrofluidics 8 (2) (2014) e024106. [123] B. Emanuel, M. Chiara, P. Nicole, A.S. Monzel, A. Paul, C.L. Linster, B. Silvia, A. Arti, J.C. Schwamborn, Millifluidic culture improves human midbrain organoid vitality and differentiation, Lab Chip 18 (2018) 3172–3183. [124] Y. Jin, J. Kim, J.S. Lee, S. Min, S. Kim, D.H. Ahn, Y.G. Kim, S.W. Cho, Vascularized liver organoids generated using induced hepatic tissue and dynamic liverspecific microenvironment as a drug testing platform, Adv. Funct. Mater. 28 (37) (2018) e1801954. [125] Y. Wang, D.B. Gunasekara, M.I. Reed, M. Disalvo, S.J. Bultman, C.E. Sims, S.T. Magness, N.L. Allbritton, A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium, Biomaterials 128 (6) (2017) 44–55. [126] Christopher Demers, Prabakaran Soundararajan, Phaneendra Chennampally, Gregory Cox, Development-on-chip: In vitro neural tube patterning with a microfluidic device, Development 143 (11) (2016) 1884–1892. [127] K.A. Homan, N. Gupta, K.T. Kroll, D.B. Kolesky, M. Skylar-Scott, T. Miyoshi, D. Mau, M.T. Valerius, T. Ferrante, J.V. Bonventre, Flow-enhanced vascularization and maturation of kidney organoids in vitro, Nat. Methods 16 (2) (2019) 255–262. [128] J. Yoonhee, K. Jin, L.J. Seung, M. Sungjin, K. Suran, A. Da-Hee, K. Yun-Gon, C. Seung-Woo, Drug screening: Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform, Adv. Funct. Mater. 28 (37) (2018) e1870266. [129] A. Skardal, S.V. Murphy, M. Devarasetty, I. Mead, H.W. Kang, Y.J. Seol, Y. Shrike Zhang, S.R. Shin, L. Zhao, J. Aleman, Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform, Sci. Rep. 7 (1) (2017) 1–16. [130] G. Vlachogiannis, S. Hedayat, A. Vatsiou, Y. Jamin, J.F. Mateos, K. Khan, A. Lampis, K. Eason, I. Huntingford, R. Burke, M. Rata, D.M. Koh, N. Tunariu, D. Collins, S.H. Wilson, C. Ragulan, I. Spiteri, S.Y. Moorcraft, I. Chau, S. Rao, D. Watkins, N. Fotiadis, M. Bali, M.D. Damavandi, H. Lote, Z. Eltahir, E.C. Smyth, R. Begum, P.A. Clarke, J.C. Hahne, M. Dowsett, J.D. Bono, P. Workman, A. Sadanandam, M. Fassan, O.J. Sansom, S. Eccles, N. Starling, C. Braconi, A. Sottoriva, S.P. Robinson, D. Cunningham, N. Valeri, Patient-derived organoids model treatment response of metastatic gastrointestinal cancers, Science 359 (6378) (2018) 920–926. [131] J. Drost, H. Clevers, Translational applications of adult stem cell-derived organoids, Development 144 (6) (2017) 968–975. [132] E. Stronen, M. Toebes, S. Kelderman, M.M. Van Buuren, W. Yang, N. Van Rooij, M. Donia, M.L. Boschen, F. Lund-Johansen, J. Olweus, Targeting of cancer neoantigens with donor-derived T cell receptor repertoires, Science 352 (6291) (2016) 1337–1341. [133] F. Weeber, V.D.W. Marc, M. Hoogstraat, K.K. Dijkstra, O. Krijgsman, T. Kuilman, C.G.M. Gadellaa-Van Hooijdonk, D.V. Van, L. Daphne, D.S. Peeper, E. P.J.G. Cuppen, Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases, Proc. Natl. Acad. Sci. USA 112 (43) (2015) 13308–13311. [134] Y.S. Zhang, J. Aleman, S.R. Shin, T. Kilic, Multisensor-integrated organs-onchips platform for automated and continual in situ monitoring of organoid behaviors, Proc. Natl. Acad. Sci. USA 114 (12) (2017) 2293–2302. [135] R. Giuliana, Manfrin Andrea, Lutolf Matthias, Progress and potential in organoid research, Nat. Rev. Genet. 19 (2018) 671–687. [136] Y.R. Lou, A.W. Leung, Next generation organoids for biomedical research and applications, Biotechnol. Adv. 36 (1) (2018) 132–149. [137] R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, J.B. Sibarita, 3D highand super-resolution imaging using single-objective SPIM, Nat. Methods 12 (7) (2015) 641–644. [138] D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography, Science 254 (5035) (1991) 1178–1181. [139] C. Sun, Y. Wang, H. Zhang, J. Qian, Near-infrared laser scanning confocal microscopy and its application in bioimaging, Opt. Quant. Electron. 50 (35) (2018) 1–9. [140] S. Yang, X. Fu, H. Yong, H. Yang, L. Ying, J. Wang, D.G. Tang, The side population in human lung cancer cell line NCI-H460 is enriched in stem-like cancer cells, Plos One 7 (3) (2012) e33358. [141] K. Boehnke, P.W. Iversen, D. Schumacher, M.J. Lallena, R. Haro, J. Amat, J. Haybaeck, S. Liebs, M. Lange, R. SchaFer, Assay sstablishment and validation of a high-throughput screening platform for three-dimensional patientderived colon cancer organoid cultures, Opt. Quant. Electron. 21 (9) (2016) 931–941. |
[1] | Qingming Ma, Jianhong Xu. Green microfluidics in microchemical engineering for carbon neutrality[J]. 中国化学工程学报, 2023, 53(1): 332-345. |
[2] | Juanjuan Liu, Xiaolong Lu, Guiming Shu, Ke Li, Shuyun Zheng, Xiao Kong, Tao Li, Jun Yang. The facile method developed for preparing polyvinylidene fluoride plasma separation membrane via macromolecular interaction[J]. 中国化学工程学报, 2022, 49(9): 140-149. |
[3] | Fang Yang, Wei Zhao, Guiren Wang. Electrokinetic mixing of two fluids with equivalent conductivity[J]. 中国化学工程学报, 2022, 42(2): 256-260. |
[4] | Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo. Reaction kinetics determination based on microfluidic technology[J]. 中国化学工程学报, 2022, 41(1): 49-72. |
[5] | Xuanyu Li, Qiang Feng, Ziwei Han, Xingyu Jiang. Enhancing gene editing efficiency for cells by CRISPR/Cas9 system-loaded multilayered nanoparticles assembled via microfluidics[J]. 中国化学工程学报, 2021, 38(10): 216-220. |
[6] | Wenhao Niu, Yuanzhi Zheng, Ying Li, Le Du, Wei Liu. Photochemical microfluidic synthesis of vitamin D3 by improved light sources with photoluminescent substrates[J]. 中国化学工程学报, 2021, 29(1): 204-211. |
[7] | Mostafa Rahimi, Sajad Yazdanparast, Pouya Rezai. Parametric study of droplet size in an axisymmetric flow-focusing capillary device[J]. 中国化学工程学报, 2020, 28(4): 1016-1022. |
[8] | Xiaojie Sui, Pengguang Chen, Chiyu Wen, Jing Yang, Qingsi Li, Lei Zhang. Exploring novel cell cryoprotectants based on neutral amino acids[J]. 中国化学工程学报, 2020, 28(10): 2640-2649. |
[9] | Yuan Pu, Jingning Leng, Dan Wang, Jiexin Wang, Neil R. Foster, Jianfeng Chen. Recent progress in the green synthesis of rare-earth doped upconversion nanophosphors for optical bioimaging from cells to animals[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2206-2218. |
[10] | Shaobin Zhang, Helen Yan, Yuhao Geng, Ke Wang, Jianhong Xu. Equilibrium morphology of gas-liquid Janus droplets: A numerical analysis of buoyancy effect[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2121-2126. |
[11] | Yunlong Zhou, He Chang, Tianyu Qi. Gas-liquid two-phase flow in serpentine microchannel with different wall wettability[J]. , 2017, 25(7): 874-881. |
[12] | Xuehui Ge, Hong Zhao, TaoWang, Jian Chen, Jianhong Xu, Guangsheng Luo. Microfluidic technology for multiphase emulsions morphology adjustment and functional materials preparation[J]. Chinese Journal of Chemical Engineering, 2016, 24(6): 677-692. |
[13] | Ping Wu, Zhaofeng Luo, Zhifeng Liu, Zida Li, Chi Chen, Lili Feng, Liqun He. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 7-14. |
[14] | Elmabruk A. Mansur, 叶明星, 王运东, 戴猷元. A State-of-the-Art Review of Mixing in Microfluidic Mixers[J]. , 2008, 16(4): 503-516. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||