[1] V. Aravindan, J. Gnanaraj, Y.-S. Lee, S. Madhavi, LiMnPO4-a next generation cathode material for lithium-ion batteries, J. Mater. Chem. A 1(11) (2013) 3518-3539. [2] J. Chen, M.J. Vacchio, S. Wang, N. Chernova, P.Y. Zavalij, M.S. Whittingham, The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications, Solid State Ionics 178(31-32) (2008) 1676-1693. [3] C.-H. Doh, D.-H. Kim, H.-S. Kim, H.-M. Shin, Y.-D. Jeong, S.-I. Moon, B.-S. Jin, S. W. Eom, H.-S. Kim, K.-W. Kim, D.-H. Oh, A. Veluchamy, Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test, J. Power Sources 175(2) (2008) 881-885. [4] M. Pivko, M. Bele, E. Tchernychova, N.Z. Logar, R. Dominko, M. Gaberscek, Synthesis of nanometric LiMnPO4 via a two-step technique, Chem. Mater. 24(6) (2012) 1041-1047. [5] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(6861) (2001) 359-367. [6] J.O. Herrera, H. Camacho-Montes, L.E. Fuentes, L. Álvarez-Contreras, LiMnPO4:Review on synthesis and electrochemical properties, J. Mater. Sci. Chem. Eng. 3(5) (2015) 54-64. [7] L. Zhang, Q. Qu, L. Zhang, J. Li, H. Zheng, Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries, J. Mater. Chem. A 2(3) (2014) 711-719. [8] L. Chang, S. Luo, S. Li, X. Lang, X. San, J. Liu, J. Li, Enhanced electrochemical performance of LiAlO2-LiMnPO4/C composite using LiAlO2 from AAO synthesis by hydrothermal rout, Ionics 26(2020) 4977-4983. [9] R. El Khalfaouy, A. Addaou, A. Laajeb, A. Lahsini, Synthesis and characterization of Na-substituted LiMnPO4 as a cathode material for improved lithium ion batteries, J. Alloy. Compd. 775(15) (2019) 836-844. [10] R. El Khalfaouy, S. Turan, K.B. Dermenci, U. Savaci, A. Addaou, A. Laajeb, A. Lahsini, Nickel-substituted LiMnPO4/C olivine cathode material:Combustion synthesis, characterization and electrochemical performances, Ceram. Int. 45(14) (2019) 17688-17695. [11] J. Li, S. Luo, X. Ding, Q. Wang, P. He, Three-dimensional honeycomb-structural LiAlO2-modified LiMnPO4 composite with superior high rate capability as Liion battery cathodes, ACS Appl Mater Interfaces 10(13) (2018) 10786-10795. [12] J. Li, S.-H. Luo, Q. Wang, S. Yan, J. Feng, X. Ding, P. He, L. Zong, Facile fabrication of hierarchical LiMnPO4 microspheres for high-performance lithium-ion batteries cathode, J. Electrochem. Soc. 166(2) (2019) A118-A124. [13] J. Li, S.-H. Luo, Q. Wang, S. Yan, J. Feng, H. Liu, X. Ding, P. He, Facile synthesis of carbon-LiMnPO4 nanorods with hierarchical architecture as a cathode for high-performance Li-ion batteries, Electrochim. Acta 289(1) (2018) 415-421. [14] L. Liang, X. Sun, J. Zhang, L. Hou, J. Sun, Y. Liu, S. Wang, C. Yuan, In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithiumion batteries, Adv. Energy Mater. 9(11) (2019) 1802847. [15] S.-H. Luo, Y. Sun, S. Bao, J. Li, J. Zhang, T.-F. Yi, Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability, J. Electroanal. Chem. 832(2019) 196-203. [16] H. Yang, C. Fu, Y. Sun, L. Wang, T. Liu, Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient, Carbon 158(2020) 102-109. [17] H. Yang, Y. Wang, J.-G. Duh, Developing a diamine-assisted polymerization method to synthesize nano-LiMnPO4 with N-doped carbon from polyamides for high-performance Li-Ion batteries, ACS Sustain. Chem. Eng. 6(10) (2018) 13302-13311. [18] A.L. Spek, Structure validation in chemical crystallography, Acta Crystallogr. D Biol. Crystallogr. 65(Pt 2) (2009) 148-155. [19] X.-L. Pan, C.-Y. Xu, D. Hong, H.-T. Fang, L. Zhen, Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode, Electrochim. Acta 87(2013) 303-308. [20] J. Liu, X. Liu, T. Huang, A. Yu, Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method, J. Power Sources 229(2013) 203-209. [21] J. Su, Z.-Z. Liu, Y.-F. Long, H. Yao, X.-Y. Lv, Y.-X. Wen, Enhanced electrochemical performance of LiMnPO4/C prepared by microwave-assisted solvothermal method, Electrochim. Acta 173(2015) 559-565. [22] Y. Hong, Z. Tang, W. Quan, S. Wang, Z. Zhang, Controllable synthesis of LiMnPO4 nanocrystals:morphology evolution and their size-dependent electrochemical properties, Ceram. Int. 42(7) (2016) 8769-8778. [23] Y. Wang, Y. Wang, X. Liu, B. Zhu, F. Wang, Solvothermal synthesis of LiFe1/3Mn1/3Co1/3PO4 solid solution as lithium storage cathode materials, RSC Adv. 7(24) (2017) 14354-14359. [24] F. Ye, L. Wang, X. He, M. Fang, Z. Dai, J. Wang, C. Huang, F. Lian, J. Wang, G. Tian, M. Ouyang, Solvothermal synthesis of nano LiMn0.9Fe0.1PO4:Reaction mechanism and electrochemical properties, J. Power Sources 253(2014) 143-149. [25] C. Zhu, Z. Wu, J. Xie, Z. Chen, J. Tu, G. Cao, X. Zhao, Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode, J. Mater. Sci. Technol. 34(9) (2018) 1544-1549. [26] H. Fang, L. Li, Y. Yang, G. Yan, G. Li, Carbonate anions controlled morphological evolution of LiMnPO4 crystals, Chem. Commun. (Camb.) 9(2008) 1118-1120. [27] H. Guo, C. Wu, J. Xie, S. Zhang, G. Cao, X. Zhao, Controllable synthesis of highperformance LiMnPO4 nanocrystals by a facile one-spot solvothermal process, J. Mater. Chem. A 2(27) (2014) 10581-10588. [28] H. Ji, G. Yang, H. Ni, S. Roy, J. Pinto, X. Jiang, General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route, Electrochim. Acta 56(9) (2011) 3093-3100. [29] P. Nie, L. Shen, F. Zhang, L. Chen, H. Deng, X. Zhang, Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries, CrystEngComm 14(13) (2012) 4284-4288. [30] N. Wizent, G. Behr, F. Lipps, I. Hellmann, R. Klingeler, V. Kataev, W. Löser, N. Sato, B. Büchner, Single-crystal growth of LiMnPO4 by the floating-zone method, J. Cryst. Growth 311(5) (2009) 1273-1277. [31] N. Wizent, G. Behr, W. Löser, B. Büchner, R. Klingeler, Challenges in the crystal growth of Li2CuO2 and LiMnPO4, J. Cryst. Growth 318(1) (2011) 995-999. [32] F. Zhou, P. Zhu, X. Fu, R. Chen, R. Sun, C.-P. Wong, Comparative study of LiMnPO4 cathode materials synthesized by solvothermal methods using different manganese salts, CrystEngComm 16(5) (2014) 766-774. [33] G. Xu, Y. Yang, L. Li, F. Li, J. Wang, L. Bao, X. Li, G. Shen, G. Han, Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO4nanostructures selfassembled with (010) nanobelts for Li-ion battery positive cathodes, CrystEngComm 18(18) (2016) 3282-3288. [34] L. Bao, G. Xu, J. Wang, H. Zong, L. Li, R. Zhao, S. Zhou, G. Shen, G. Han, Hydrothermal synthesis of flower-like LiMnPO4 nanostructures selfassembled with (010) nanosheets and their application in Li-ion batteries, CrystEngComm 17(33) (2015) 6399-6405. [35] S. Gnewuch, E.E. Rodriguez, Distinguishing the intrinsic antiferromagnetism in polycrystalline LiCoPO4 and LiMnPO4 olivines, Inorg. Chem. 59(9) (2020) 5883-5895. [36] X. Pan, Z. Gao, L. Liu, S. Xie, H. Yuan, F. Xiao, Controllable fabrication of LiMnPO4 microspheres assembled by radially arranged nanoplates with highly exposed (010) facets for an enhanced electrochemical performance, CrystEngComm 21(47) (2019) 7217-7223. [37] S.L. Shang, Y. Wang, Z.G. Mei, X.D. Hui, Z.K. Liu, Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4(M=Mn, Fe Co, and Ni):a comparative first-principles study, J. Mater. Chem. 22(3) (2012) 1142-1149. [38] G. Xu, Z.H. Ren, P.Y. Du, W.J. Weng, G. Shen, G.R. Han, Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires, Adv. Mater. 17(7) (2005) 907. [39] Q. Li, Y. Ding, F.Q. Li, B. Xie, Y.T. Qian, Solvothermal deposition of vaterite thin film on glass substrate, Thin Solid Films 414(2) (2002) 180-183. [40] Q. Li, Y. Ding, F.Q. Li, B. Xie, Y.T. Qian, Solvothermal growth of vaterite in the presence of ethylene glycol, 1,2-propanediol and glycerin, J. Cryst. Growth 236(1-3) (2002) 357-362. [41] L. Bao, Y. Chen, G. Xu, T. Yang, Z. Ji, Hydrothermal synthesis of monodispersed LiMnPO4(010) nanobelts and [001] nanorods and their applications in lithium-Ion batteries, Eur. J. Inorg. Chem. 2018(13) (2018) 1533-1539. [42] Z. Qin, X. Zhou, Y. Xia, C. Tang, Z. Liu, Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries, J. Mater. Chem. 22(39) (2012) 21144-21153. [43] W. Zhang, Z. Shan, K. Zhu, S. Liu, X. Liu, J. Tian, LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance Li-ion batteries, Electrochim. Acta 153(2015) 385-392. |