[1] P. Del Rio, C. Penasco, P. Mir-Artigues, An overview of drivers and barriers to concentrated solar power in the European Union, Renew. Sust. Energy Rev. 81(2018) 1019-1029. [2] G. Zsembinszki, A. Sole, C. Barreneche, C. Prieto, A. Ines Fernandez, L.F. Cabeza, Review of reactors with potential use in thermochemical energy storage in concentrated solar power plants, Energies 11(2018) 2358. [3] M. Liu, N.H.S. Tay, S. Bell, M. Belusko, R. Jacob, G. Will, W. Saman, F. Bruno, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renew. Sust. Energy Rev. 53(2016) 1411-1432. [4] M. Khan, T. Salahuddin, A. Tanveer, M.Y. Malik, A. Hussain, Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along with solar radiation and thermal conductivity, Chinese J. Chem. Eng. 27(2019) 2352-2358. [5] N. Fan, L. Chen, G. Xie, D. Yin, C. Au, S. Yin, Preparation and phase change performance of Na2HPO4. 12H2O@poly (lactic acid) capsules for thermal energy storage, Chinese J. Chem. Eng. 27(2019) 695-700. [6] M. Sarvghad, S.D. Maher, D. Collard, M. Tassan, G. Will, T.A. Steinberg, Materials compatibility for the next generation of concentrated solar power plants, Energy Storage Mater. 14(2018) 179-198. [7] N.S. Patel, V. Pavlik, M. Boca, High-temperature corrosion behavior of superalloys in molten salts-A review, Crit. Rev. Solid State 42(2017) 83-97. [8] D. Kearney, B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava, N. Potrovitza, Engineering aspects of a molten salt heat transfer fluid in a trough solar field, Energy 29(2004) 861-870. [9] M.T. Islam, N. Huda, A.B. Abdullah, R. Saidur, A comprehensive review of stateof-the-art concentrating solar power (CSP) technologies:Current status and research trends, Renew. Sust. Energy Rev. 91(2018) 987-1018. [10] P. Pardo, A. Deydier, Z. Anxionnaz-Minvielle, S. Rouge, M. Cabassud, P. Cognet, A review on high temperature thermochemical heat energy storage, Renew. Sust. Energy Rev. 32(2014) 591-610. [11] S. Wu, C. Zhou, E. Doroodchi, R. Nellore, B. Moghtaderi, A review on hightemperature thermochemical energy storage based on metal oxides redox cycle, Energy Convers. Manage. 168(2018) 421-453. [12] Z. Ma, S. Wu, Y. Li, Research progress of CO2 capture with the assist CaO-based energy storage materials at coal-fired power station, Clean Coal Technol. 25(2019) 1-8. [13] Y.A. Criado, M. Alonso, A.J. Carlos, Enhancement of a CaO/Ca(OH)2 based material for thermochemical energy storage, Sol. Energy 135(2016) 800-809. [14] E. Bagherisereshki, J. Tran, F. Lei, N. Au-Yeung, Investigation into SrO/SrCO3 for high temperature thermochemical energy storage, Sol. Energy 160(2018) 85-93. [15] H.B. Dizaji, H. Hosseini, A review of material screening in pure and mixedmetal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications, Renew. Sust. Energy Rev. 98(2018) 9-26. [16] C. Sattler, M. Roeb, C. Agrafiotis, D. Thomey, Solar hydrogen production via sulphur based thermochemical water-splitting, Sol. Energy 156(2017) 30-47. [17] X. Qu, Y. Li, P. Li, Q. Wan, F. Zhai, The development of metal hydrides using as concentrating solar thermal storage materials, Front Mater. Sci. 9(2015) 317-331. [18] C. Chen, H. Aryafar, K.M. Lovegrove, A.S. Lavine, Modeling of ammonia synthesis to produce supercritical steam for solar thermochemical energy storage, Sol. Energy 155(2017) 363-371. [19] X. Chen, Z. Zhang, C. Qi, X. Ling, H. Peng, State of the art on the hightemperature thermochemical energy storage systems, Energy Convers. Manage. 177(2018) 792-815. [20] J.M. Valverde, The Ca-looping process for CO2 capture and energy storage:Role of nanoparticle technology, J. Nanopart. Res. 20(2018) 39-55. [21] S. Tai, S. Zhu, Y. Li, Steam coal utilization and carbon capture and storage in China, Clean Coal Technol. 20(5) (2014) 66-69. [22] Y. Lei, Y.U. Hongbing, W. Shengqiang, W. Haowen, Z. Qibin, Carbon dioxide captured from flue gas by modified Ca-based sorbents in fixed-bed reactor at high temperature, Chinese J. Chem. Eng. 21(2013) 199-204. [23] B. Wang, X. Song, Z. Wang, C. Zheng, Preparation and application of the sol-gel combustion synthesis-made CaO/CaZrO3 sorbent for cyclic CO2 capture through the severe calcination condition, Chinese J. Chem. Eng. 22(2014) 991-999. [24] D. Hu, J. Huang, C. Li, Z. Yu, S. Kang, Research progress on chemical-looping combustion and pollutant release for solid fuels, Clean Coal Technol. 26(4) (2020) 1-10. [25] R. Chacartegui, A. Alovisio, C. Ortiz, J.M. Valverde, V. Verda, J.A. Becerra, Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle, Appl. Energy 173(2016) 589-605. [26] M. Benitez-Guerrero, B. Sarrion, A. Perejon, P.E. Sanchez-Jimenez, L.A. PerezMaqueda, J.M. Valverde, Large-scale high-temperature solar energy storage using natural minerals, Sol. Energ. Mat. Sol. C 168(2017) 14-21. [27] H. Sun, Y. Li, Z. Bian, X. Yan, Z. Wang, W. Liu, Thermochemical energy storage performances of Ca-based natural and waste materials under high pressure during CaO/CaCO3 cycles, Energy Convers. Manage. 197(2019) 111885. [28] K.G. Sakellariou, N.I. Tsongidis, G. Karagiannakis, A.G. Konstandopoulos, D. Baciu, G. Charalambopoulou, T. Steriotis, A. Stubos, W. Arlt, Development and evaluation of materials for thermochemical heat storage based on the CaO/CaCO3 reaction couple, AIP Conf. Pro. 1737(2016) 050040. [29] B. Sarrion, J.M. Valverde, A. Perejon, L. Perez-Maqueda, P.E. Sanchez-Jimenez, On the multicycle activity of natural limestone/dolomite for thermochemical energy storage of concentrated solar power, Energy Technol.-Ger. 4(2016) 1013-1019. [30] P.E. Sanchez-Jimenez, A. Perejon, M. Benitez-Guerrero, J.M. Valverde, C. Ortiz, L.A. Perez-Maqueda, High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants, Appl. Energy 235(2019) 543-552. [31] J.M. Valverde, M. Barea-Lopez, A. Perejon, P.E. Sanchez-Jimenez, L.A. PerezMaqueda, Effect of thermal pretreatment and nanosilica addition on limestone performance at calcium-looping conditions for thermochemical energy storage of concentrated solar power, Energy Fuel 31(2017) 4226-4236. [32] M. Aihara, T. Nagai, J. Matsushita, Y. Negishi, H. Ohya, Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction, Appl. Energy 69(2001) 225-238. [33] B. Sarrion, A. Perejon, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, J.M. Valverde, Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage, J. CO2 Util. 28(2018) 374-384. [34] K. Wang, F. Gu, P.T. Clough, P. Zhao, E.J. Anthony, Porous MgO-stabilized CaObased powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants, Chem. Eng. J. 390(2020) 124163. [35] M. Benitez-Guerrero, J. Manuel Valverde, P.E. Sanchez-Jimenez, A. Perejon, L.A. Perez-Maqueda, Calcium-looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture, Chem. Eng. J. 334(2018) 2343-2355. [36] A. Perejon, J.M. Valverde, J. Miranda-Pizarro, P.E. Sanchez-Jimenez, L.A. PerezMaqueda, Large-scale storage of concentrated solar power from industrial waste, ACS Sustain. Chem. Eng. 5(2017) 2265-2272. [37] N. Gokon, S. Takahashi, H. Yamamoto, T. Kodama, Thermochemical twostep water-splitting reactor with internally circulating fluidized bed for thermal reduction of ferrite particles, Int. J. Hydrogen Energy 33(2008) 2189-2199. [38] A. Meier, E. Bonaldi, G.M. Cella, W. Lipinski, D. Wuillemin, Solar chemical reactor technology for industrial production of lime, Sol. Energy 80(2006) 1355-1362. [39] Z. Ma, Y. Li, W. Zhang, Y. Wang, J. Zhao, Z. Wang, Energy storage and attrition performance of limestone under fluidization during CaO/CaCO3 cycles, Energy 207(2020) 118291. [40] C. Qin, H. Du, L. Liu, J. Yin, B. Feng, CO2 capture performance and attrition property of CaO-based pellets manufactured from organometallic calcium precursors by extrusion, Energy Fuel 28(2014) 329-339. [41] J. Sun, W. Liu, Y. Hu, M. Li, X. Yang, Y. Zhang, M. Xu, Structurally improved, core-in-shell, CaO-based sorbent pellets for CO2 capture, Energy Fuel 29(2015) 6636-6644. [42] J. Sun, W. Liu, Y. Hu, J. Wu, M. Li, X. Yang, W. Wang, M. Xu, Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture, Chem. Eng. J. 285(2016) 293-303. [43] J. Sun, Y. Sun, Y. Yang, X. Tong, W. Liu, Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature, Appl. Energ. 242(2019) 919-930. [44] Y. Xu, H. Ding, C. Luo, Y. Zheng, Y. Xu, X. Li, Z. Zhang, C. Shen, L. Zhang, Porous spherical calcium-based sorbents prepared by a bamboo templating method for cyclic CO2 capture, Fuel 219(2018) 94-102. [45] F.N. Ridha, Y. Wu, V. Manovic, A. Macchi, E.J. Anthony, Enhanced CO2 capture by biomass-templated Ca(OH)2-based pellets, Chem. Eng. J. 274(2015) 69-75. [46] B. Li, Y. Li, H. Sun, Y. Wang, Z. Wang, Thermochemical heat storage performance of CaO pellets fabricated by extrusion-spheronization under harsh calcination conditions, Energy Fuel 34(2020) 6462-6473. [47] V. Manovic, E.J. Anthony, Screening of binders for pelletization of CaO-based sorbents for CO2 capture, Energy Fuel 23(2009) 4797-4804. [48] F.N. Ridha, V. Manovic, A. Macchi, E.J. Anthony, High-temperature CO2 capture cycles for CaO-based pellets with kaolin-based binders, Int. J. Greenh. Gas Con. 6(2012) 164-170. [49] C. Chi, Y. Li, CO2 capture performance and mechanical properties of granulated calcium-based sorbent, Chem. Ind. Eng. Prog. 37(2018) 4908-4916. [50] V. Manovic, E.J. Anthony, CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture, Environ. Sci. Technol. 43(2009) 7117-7122. [51] K.G. Sakellariou, Y.A. Criado, N.I. Tsongidis, G. Karagiannakis, A.G. Konstandopoulos, Multi-cyclic evaluation of composite CaO-based structured bodies for thermochemical heat storage via the CaO/Ca(OH)2 reaction scheme, Sol. Energy 146(2017) 65-78. [52] Y. Wu, V. Manovic, I. He, E.J. Anthony, Modified lime-based pellet sorbents for high-temperature CO2 capture:Reactivity and attrition behavior, Fuel 96(2012) 454-461. [53] C. Qin, J. Yin, H. An, W. Liu, B. Feng, Performance of extruded particles from calcium hydroxide and cement for CO2 capture, Energy Fuel 26(2012) 154-161. [54] S.K. Kawatra, S.J. Ripke, Pelletizing steel mill desulfurization slag, Int. J. Miner. Process. 65(2002) 165-175. [55] H. Sun, Y. Li, X. Yan, J. Zhao, Z. Wang, Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure, Appl. Energy 263(2020) 114650. |