[1] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review, Appl. Catal. A: Gen. 398 (1-2) (2011) 1-17 [2] P. Dugkhuntod, C. Wattanakit, A comprehensive review of the applications of hierarchical zeolite nanosheets and nanoparticle assemblies in light olefin production, Catalysts 10 (2) (2020) 245 [3] S.M. Alipour, Recent advances in naphtha catalytic cracking by nano ZSM-5: A review, Chin. J. Catal. 37 (5) (2016) 671-680 [4] T. Komatsu, H. Ishihara, Y. Fukui, T. Yashima, Selective formation of alkenes through the cracking of n-heptane on Ca2+-exchanged ferrierite, Appl. Catal. A: Gen. 214 (1) (2001) 103-109 [5] M.F. Alotibi, B.A. Alshammari, M.H. Alotaibi, F.M. Alotaibi, S. Alshihri, R.M. Navarro, J.L.G. Fierro, ZSM-5 zeolite based additive in FCC process: A review on modifications for improving propylene production, Catal. Surv. From Asia 24 (1) (2020) 1-10 [6] G.T. Kokotailo, S.L. Lawton, D.H. Olson, W.M. Meier, Structure of synthetic zeolite ZSM-5, Nature 272 (5652) (1978) 437-438 [7] Y.J. Ji, H.H. Yang, W. Yan, Strategies to enhance the catalytic performance of ZSM-5 zeolite in hydrocarbon cracking: A review, Catalysts 7 (12) (2017) 367 [8] J. Pérez-Ramírez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design, Chem. Soc. Rev. 37 (11) (2008) 2530-2542 [9] R. Chal, C. Gérardin, M. Bulut, S. Van Donk, Overview and industrial assessment of synthesis strategies towards zeolites with mesopores, ChemCatChem 3 (1) (2011) 67-81 [10] F.Q. Chen, L.Y. Ma, D.G. Cheng, X.L. Zhan, Synthesis of hierarchical porous zeolite and its performance in n-heptane cracking, Catal. Commun. 18 (2012) 110-114 [11] X.X. Zhang, D.G. Cheng, F.Q. Chen, X.L. Zhan, n-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: The effect of mesopores, Chem. Eng. Sci. 168 (2017) 352-359 [12] S. Mintova, M. Jaber, V. Valtchev, Nanosized microporous crystals: Emerging applications, Chem. Soc. Rev. 44 (20) (2015) 7207-7233 [13] H. Mochizuki, T. Yokoi, H. Imai, R. Watanabe, S. Namba, J.N. Kondo, T. Tatsumi, Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane, Microporous Mesoporous Mater. 145 (1-3) (2011) 165-171 [14] H. Konno, T. Tago, Y. Nakasaka, R. Ohnaka, J.I. Nishimura, T. Masuda, Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha, Microporous Mesoporous Mater. 175 (2013) 25-33 [15] G.Z. Li, Z.H. Diao, J. Na, L. Wang, Exploring suitable ZSM-5/MCM-41 zeolites for catalytic cracking of n-dodecane: Effect of initial particle size and Si/Al ratio, Chin. J. Chem. Eng. 23 (10) (2015) 1655-1661 [16] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature 461 (7261) (2009) 246-249 [17] X. Xiao, Y.Y. Zhang, G.Y. Jiang, J. Liu, S.L. Han, Z. Zhao, R.P. Wang, C. Li, C.M. Xu, A.J. Duan, Y.J. Wang, J. Liu, Y.C. Wei, Simultaneous realization of high catalytic activity and stability for catalytic cracking of n-heptane on highly exposed (010) crystal planes of nanosheet ZSM-5 zeolite, Chem. Commun. (Camb.) 52 (65) (2016) 10068-10071 [18] Y. Seo, K. Cho, Y. Jung, R. Ryoo, Characterization of the surface acidity of MFI zeolite nanosheets by 31P NMR of adsorbed phosphine oxides and catalytic cracking of decalin, ACS Catal. 3 (4) (2013) 713-720 [19] F.X. Feng, L. Wang, X.W. Zhang, Q.F. Wang, Selective Hydroconversion of Oleic Acid into Aviation-Fuel-Range Alkanes over Ultrathin Ni/ZSM-5 Nanosheets, Ind. Eng. Chem. Res. 58 (2019) 5432-5444 [20] Y.J. Ji, B.F. Shi, H.H. Yang, W. Yan, Synthesis of isomorphous MFI nanosheet zeolites for supercritical catalytic cracking of n-dodecane, Appl. Catal. A: Gen. 533 (2017) 90-98 [21] Y.J. Tian, B.F. Zhang, H.R. Liang, X. Hou, L. Wang, X.W. Zhang, G.Z. Liu, Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins, Appl. Catal. A: Gen. 572 (2019) 24-33 [22] S. Akiyama, H. Mochizuki, H. Yamazaki, T. Yokoi, T. Tatsumi, J.N. Kondo, The effective silylation of external surface on H-ZSM5 with cyclic siloxane for the catalytic cracking of naphtha, Mol. Catal. 433 (2017) 48-54 [23] T. Wu, S.L. Chen, G.M. Yuan, Y.Q. Cao, K.Y. Su, Enhanced catalytic performance in butylene cracking by hierarchical surface silicon-rich ZSM-5, Fuel Process. Technol. 167 (2017) 162-170 [24] A. Abdalla, P. Arudra, S.S. Al-Khattaf, Catalytic cracking of 1-butene to propylene using modified H-ZSM-5 catalyst: A comparative study of surface modification and core-shell synthesis, Appl. Catal. A: Gen. 533 (2017) 109-120 [25] Z.R. Zhu, Z.K. Xie, Q.L. Chen, D.J. Kong, W. Li, W.M. Yang, C. Li, Chemical liquid deposition with polysiloxane of ZSM-5 and its effect on acidity and catalytic properties, Microporous Mesoporous Mater. 101 (1-2) (2007) 169-175 [26] R.W. Weber, K.P. Möller, M. Unger, C.T. O'Connor, The chemical vapour and liquid deposition of tetraethoxysilane on the external surface of ZSM-5, Microporous Mesoporous Mater. 23 (3-4) (1998) 179-187 [27] S.R. Zheng, H.R. Heydenrych, A. Jentys, J.A. Lercher, Influence of surface modification on the acid site distribution of HZSM-5, J. Phys. Chem. B 106 (37) (2002) 9552-9558 [28] J. Lv, Z.L. Hua, J. Zhou, Z.C. Liu, H.L. Guo, J.L. Shi, Surface-passivated hierarchically structured ZSM5 zeolites: High-performance shape-selective catalysts for para-xylene production, ChemCatChem 10 (10) (2018) 2278-2284 [29] F. Dong, G.R. Wang, X.S. Wang, Fine control of HZSM-5's pore-opening size by a new CVD method, Chin. J. Chem. Eng. 3 (1995) 208-214 [30] J.H. Kim, A. Ishida, M. Okajima, M. Niwa, Modification of HZSM-5 by CVD of various silicon compounds and generation of Para-selectivity, J. Catal. 161 (1) (1996) 387-392 [31] F.X. Feng, X.P. Niu, L. Wang, X.W. Zhang, Q.F. Wang, TEOS-modified Ni/ZSM-5 nanosheet catalysts for hydroconversion of oleic acid to high-performance aviation fuel: Effect of acid spatial distribution, Microporous Mesoporous Mater. 291 (2020) 109705 [32] L. Emdadi, Y.Q. Wu, G.H. Zhu, C.C. Chang, W. Fan, T. Pham, R.F. Lobo, D.X. Liu, Dual template synthesis of meso- and microporous MFI zeolite nanosheet assemblies with tailored activity in catalytic reactions, Chem. Mater. 26 (3) (2014) 1345-1355 [33] V.V. Ordomsky, V.Y. Murzin, Y.V. Monakhova, Y.V. Zubavichus, E.E. Knyazeva, N.S. Nesterenko, I.I. Ivanova, Nature, strength and accessibility of acid sites in micro/mesoporous catalysts obtained by recrystallization of zeolite BEA, Microporous Mesoporous Mater. 105 (1-2) (2007) 101-110 [34] C.A. Emeis, Determination of integrated molar extinction coefficients for IR absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal. 141 (1993) 347-354 [35] K. Góra-Marek, K. Tarach, M. Choi, 2, 6-di-tert-butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites, J. Phys. Chem. C 118 (23) (2014) 12266-12274 [36] K. Góra-Marek, M. Derewiński, P. Sarv, J. Datka, IR and NMR studies of mesoporous alumina and related aluminosilicates, Catal. Today 101 (2) (2005) 131-138 [37] J.A. van Bokhoven, B.A. Williams, W. Ji, D.C. Koningsberger, H.H. Kung, J.T. Miller, Observation of a compensation relation for monomolecular alkane cracking by zeolites: The dominant role of reactant sorption, J. Catal. 224 (1) (2004) 50-59 [38] J. Abbot, Role of Brønsted and Lewis acid sites during cracking reactions of alkanes, Appl. Catal. 47 (1) (1989) 33-44 [39] S. Kotrel, H. Knözinger, B.C. Gates, The Haag-Dessau mechanism of protolytic cracking of alkanes, Microporous Mesoporous Mater. 35-36 (2000) 11-20 [40] A. Corma, V. Fornés, J. Martı?nez-Triguero, S.B. Pergher, Delaminated zeolites: Combining the benefits of zeolites and mesoporous materials for catalytic uses, J. Catal. 186(1) (1999) 57-63. [41] D.M.D. Meloni, M. Guisnet, Acidic and catalytic properties of H-MCM-22 zeolites 2. n-Heptane cracking: Activity, selectivity and deactivation by coking, Appl. Catal. A: Gen 215 (2001) 67-79 [42] Y. Wang, T. Yokoi, S. Namba, J.N. Kondo, T. Tatsumi, Catalytic cracking of n-hexane for producing propylene on MCM-22 zeolites, Appl. Catal. A: Gen. 504 (2015) 192-202 [43] Y.J. Tian, Y. Qiu, X. Hou, L. Wang, G.Z. Liu, Catalytic cracking of JP-10 over HZSM-5 nanosheets, Energy Fuels 31 (11) (2017) 11987-11994 [44] Y.S. Shang, W.G. Wang, Y.L. Zhai, Y. Song, X.M. Zhao, T. Ma, J.H. Wei, Y.J. Gong, Seed-fused ZSM-5 nanosheet as a superior MTP catalyst: Synergy of micro/mesopore and inter/external acidity, Microporous Mesoporous Mater. 276 (2019) 173-182 [45] Á. Ibarra, A. Veloso, J. Bilbao, J.M. Arandes, P. Castaño, Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions, Appl. Catal. B: Environ. 182 (2016) 336-346 [46] M.L. Ji, G.Z. Liu, C. Chen, L. Wang, X.W. Zhang, S.L. Hu, X.S. Ma, Catalytic performances of b-oriented bi-layered HZSM-5 coatings for cracking of hydrocarbon fuels, Appl. Catal. A: Gen. 482 (2014) 8-15 |