[1] V. Karthickeyan, Effect of cetane enhancer on Moringa oleifera biodiesel in a thermal coated direct injection diesel engine, Fuel 235(2019) 538-550. [2] N. Akkarawatkhoosith, A. Kaewchada, A. Jaree, Simultaneous development of biodiesel synthesis and fuel quality via continuous supercritical process with reactive co-solvent, Fuel 237(2019) 117-125. [3] A.T. Jarullah, I.M. Mujtaba, A.S. Wood, Improving fuel quality by whole crude oil hydrotreating:A kinetic model for hydrodeasphaltenization in a trickle bed reactor, Appl. Energ. 94(2012) 182-191. [4] X. Yue, Y. Wu, J. Hao, Y. Pang, Y. Ma, Y. Li, B. Li, X. Bao, Fuel quality management versus vehicle emission control in China, status quo and future perspectives, Energ. Policy 79(2015) 87-98. [5] H. Ni, C. Xu, R. Wang, X. Guo, Y. Long, C. Ma, L. Yan, X. Liu, Q. Shi, Q, Composition and transformation of sulfur-, oxygen-, and nitrogen-containing compounds in the hydrotreating process of a low-temperature coal tar, Energ. Fuels 32(2018) 3077-3084. [6] N. Azizi, S.A. Ali, K. Alhooshani, T. Kim, Y. Lee, J.I. Park, J. Miyawaki, S.H. Yoon, I. Mochida, Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports, Fuel Process. Technol. 109(2013) 172-178. [7] H. Yu, S. Li, G. Jin, Catalytic hydrotreating of the diesel distillate from Fushun shale oil for the production of clean fuel, Energ. Fuels 24(2010) 4419-4424. [8] A. Corma, V. González-Alfaro, A.V. Orchillés, Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil, J. Catal. 200(2001) 34-44. [9] S. Kovács, T. Kasza, A. Thernesz, I.W. Horváth, J. Hancsók, Fuel production by hydrotreating of triglycerides on NiMo/Al2O3/F catalyst, Chem. Eng. J. 176(2011) 237-243. [10] G.C. Laredo, R. Saint-Martin, M.C. Martinez, J. Castillo, J.L. Cano, High quality diesel by hydrotreating of atmospheric gas oil/light cycle oil blends, Fuel 83(2004) 1381-1389. [11] C. Yin, T. Wu, C. Dong, F. Li, D. Liu, C. Liu, Preparation of highly active unsupported Ni-Si-Mo catalyst for the deep hydrogenation of aromatics, J. Alloy. Compd. 834(2020) 155076. [12] B. Pawelec, E. Cano-Serrano, J.M. Campos-Martin, R.M. Navarro, S. Thomas, J.L. G. Fierro, Deep aromatics hydrogenation in the presence of DBT over Au-Pd/calumina catalysts, App. Catal. A:Gen. 275(2004) 127-139. [13] C.M.C. Romero, J.W. Thybaut, G.B. Marin, Naphthalene hydrogenation over a NiMo/c-Al2O3 catalyst:Experimental study and kinetic modelling, Catal. Today 130(2008) 231-242. [14] J.Y. Jing, J.Z. Wang, D.C. Liu, Z.Q. Qie, H.C. Bai, W.Y. Li, Naphthalene hydrogenation saturation over Ni2P/Al2O3 catalysts synthesized by thermal decomposition of hypophosphite, ACS Omega 5(2020) 31423-31431. [15] J. Liu, H. Zhang, N. Lu, X. Yan, B. Fan, R. Li, Influence of acidity of mesoporous ZSM-5-supported Pt on naphthalene hydrogenation, Ind. Eng. Chem. Res. 59(2020) 1056-1064. [16] S. Cui, G. Wang, Y. Yang, B. Liu, Influence of Si/Al molar ratio on the hydrogenation, isomerization and ring opening of naphthalene over silicaalumina supported Ni2P catalyst, Fuel 225(2018) 10-17. [17] X. Chen, Y. Ma, L. Wang, Z. Yang, S. Jin, L. Zhang, C. Liang, Nickel-aluminum intermetallic compounds as highly selective and stable catalysts for the hydrogenation of naphthalene to tetralin, ChemCatChem 7(2015) 978-983. [18] S. Hodoshima, H. Arai, S. Takaiwa, Y. Saito, Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle, Int. J. Hydrogen Energy 28(2003) 1255-1262. [19] H. Chen, H. Yang, O. Omotoso, L. Ding, Y. Briker, Y. Zheng, Z. Ring, Contribution of hydrogen spillover to the hydrogenation of naphthalene over diluted Pt/RHO catalysts, Appl. Catal. A:Gen. 358(2009) 103-109. [20] S. Dokjampa, T. Rirksomboon, S. Osuwan, S. Jongpatiwut, D.E. Resasco, Comparative study of the hydrogenation of tetralin on supported Ni, Pt, and Pd catalysts, Catal. Today 123(2007) 218-223. [21] B. Pawelec, A.M. Venezia, V. La Parola, E. Cano-Serrano, J.M. Campos-Martin, J. L.G. Fierro, AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation, Appl. Surf. Sci. 242(2005) 380-391. [22] N. Hiyoshi, A. Yamaguchi, R.V. Chandrashekar, O. Sato, M. Shirai, Graphitesupported rhodium catalysts for naphthalene hydrogenation in supercritical carbon dioxide solvent, Catal. Commun. 10(2009) 1681-1684. [23] F. Li, X. Yi, J. Zheng, H. Jin, W. Wang, A pretreatment method of Ni/c-Al2O3 catalyst for naphthalene hydrogenation, Catal. Commun. 11(2009) 266-271. [24] R. Nares, J. Ramírez, A. Gutiérrez-Alejandre, R. Cuevas, Characterization and hydrogenation activity of Ni/Si (Al)-MCM-41 catalysts prepared by depositionprecipitation, Ind. Eng. Chem. Res. 48(2009) 1154-1162. [25] A. Zhao, X. Zhang, X. Chen, J. Guan, C. Liang, Cobalt silicide nanoparticles in mesoporous silica as efficient naphthalene hydrogenation catalysts by chemical vapor deposition, J. Phys. Chem. C 114(2010) 3962-3967. [26] I.A. Sizova, S.I. Serdyukov, A.L. Maksimov, N.A. Sinikova, Nickel-tungsten sulfide polyaromatic hydrocarbon hydrogenation nanocatalysts prepared in an ionic liquid, Petrol. Chem. 55(2015) 38-44. [27] I.A. Sizova, S.I. Serdyukov, A.L. Maksimov, Nickel-tungsten sulfide aromatic hydrocarbon hydrogenation catalysts synthesized in situ in a hydrocarbon medium, Petrol. Chem. 55(2015) 470-480. [28] R.A. Batryshin, D.A. Makeeva, L.A. Kulikov, Y.S. Kardasheva, A.L. Maksimov, E.A. Karakhanov, Nickel-Tungsten and Nickel-Molybdenum sulfide diesel hydrocarbon hydrogenation catalysts synthesized in pores of aromatic polymer materials, Petrol. Chem. 59(2019) 575-580. [29] S.J. Ardakani, X. Liu, K.J. Smith, Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts, Appl. Catal A:Gen. 324(2007) 9-19. [30] B. Pawelec, V. La Parola, S. Thomas, J.L.G. Fierro, Enhancement of naphthalene hydrogenation over PtPd/SiO2-Al2O3 catalyst modified by gold, J. Mol. Catal. A:Chem. 253(2006) 30-43. [31] C. Song, X. Ma, New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization, Appl. Catal. B:Environ. 41(2003) 207-238. [32] A. Zhao, X. Zhang, X. Chen, J. Guan, C. Liang, Cobalt silicide nanoparticles in mesoporous silica as efficient naphthalene hydrogenation catalysts by chemical vapor deposition, J. Phys. Chem. C 144(2010) 3962-3967. [33] A. Stanislaus, A. Marafi, M.S. Rana, Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production, Catal. Today 153(2010) 1-68. [34] M. Pang, C. Liu, W. Xia, M. Muhler, C. Liang, Activated carbon supported molybdenum carbides as cheap and highly efficient catalyst in the selective hydrogenation of naphthalene to tetralin, Green Chem. 14(2012) 1272-1276. [35] S. Eijsbouts, S.W. Mayo, K. Fujita, Unsupported transition metal sulfide catalysts:From fundamentals to industrial application, Appl. Catal. A:Gen. 322(2007) 58-66. [36] C. Yin, H. Liu, X. Li, Y. Wang, B. Liu, L. Zhao, C. Liu, Novel binary promoter NiCoMo layered molybdate catalyst:synthesis, characterization and hydrodesulfurization property, Catal. Lett. 144(2014) 285-292. [37] X. Su, P. An, J. Gao, R. Wang, Y. Zhang, X. Li, Y. Zhao, Y. Liu, X. Ma, M. Sun, Selective catalytic hydrogenation of naphthalene to tetralin over a Ni-Mo/Al2O3 catalyst, Chinese J. Chem. Eng. 28(2020) 2566-2576. [38] M.J. Girgis, B.C. Gates, Reactivities, reaction networks, and kinetics in highpressure catalytic hydroprocessing, Ind. Eng. Chem. Res. 30(1991) 2021-2058. |