1 Ce'cile, C., Christian, C., Iskender, G.Ö., Dilek, F.K., “CO2 addition and pressure effects on laminar and turbulent lean premixed CH4 air flames”, Proc. Combust. Inst., 32, 1803-1810 (2009).2 Kwang, C.O., Hyun, D.S., “The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames”, Fuel, 85, 615-624 (2006).3 Zhang, Y.D., Zhou, H.C., Xie, M.L., Fang, Q.Y., Wei, Y., “Modeling of soot formation in gas burner using reduced chemical kinetics coupled with CFD code”, Chin. J. Chem. Eng., 18, 967-978 (2010).4 Maricq, M.M., “A comparison of soot size and charge distributions from ethane, ethylene, acetylene, and benzene/ethylene premixed flames”, Combust. Flame, 144, 730-743 (2006).5 Marr, J.A., “PAH chemistry in a jet stirred/plug flow reactor system”, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, USA (1993).6 Kazakov, A., Wang, H., Frenklach, M., “Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 Bar”, Combust. Flame, 100, 111-120 (1995). 7 Zhang, Y., Lou, C., Xie, M., Fang, Q., Zhou, H., “Computation and measurement for distributions of temperature and soot volume fraction in diffusion flames”, Journal of Central South University of Technology, 18, 1263-1271 (2011).8 Li, S.L., Jiang, Y., Chen, W.T., “Numerical analysis on the characteristics of soot particles in C2H4/CO2/O2/N2 combustion”, Chin. J. Chem. Eng., 21, 238-245 (2013).9 Chen, Y., Zhang, J., “Effects of gas temperature fluctuation on the soot formation reactions”, Chin. J. Chem. Eng., 21, 25-30 (2013).10 Kazakov, A., Frenklach, M., “Dynamic modeling of soot particle coagulation and aggregation: Implementation with the method of moments and application to high-pressure laminar premixed flames”, Combust. Flame, 114, 484-501 (1998).11 Violi, A., D'Anna, A., D'Alessio, A., “Modeling of particulate formation in combustion and pyrolysis”, Chem. Eng. Sci., 54, 3433-3442 (1999).12 Frenklach, M., “Reaction mechanism of soot formation in flames”, Phys. Chem. Chem. Phys., 4, 2028-2037 (2002).13 Du, D.X., Axelbaum, R.L., Law, C.K., “The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames”, Proc. Combust. Inst., 23, 1501-1507 (1990).14 Ni, T., Gupta, S.B., Santoro, R.J., “Suppression of soot formation in ethene laminar diffusion flames by chemical additives”, Proc. Combust. Inst., 25, 1379-1385 (1994).15 Liu, F., Guo, H., Smallwood, G.J., Gulder, Ö., “The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation”, Combust. Flame, 125, 778-787 (2001).16 Renard, C., Dias, V., van Tiggelen, P.J., Vandooren, J., “Flame structure studies of rich ethylene-oxygen-argon mixtures doped with CO2, or with NH3, or with H2O”, Proc. Combust. Inst., 32, 631-637 (2009).17 Vandooren, J., Thill, L., Musick, M., van Tiggelen, P.J., “Depletion of soot precursors by CO2 addition to rich hydrocarbon flames”, In: 20th Task Leaders Meeting of the IEA Implementing Agreement, Energy Conservation and Emission Reduction in Combustion, Ottawa, 26-29 (1998). 18 Gordon, S., McBride, B.J., Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouget Detonations, National Aeronautics and Space Administration, Washington (1971).19 Troe, J., “Thermal dissociation and recombination of polyatomic molecules”, Proc. Combust. Inst., 15, 667-680 (1975).20 Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A., “A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties”, Sandia Report #SAND 86-8246, Sandia National Laboratories (1986).21 Frenklach, M., Wang, H., “Detailed mechanism and modeling of soot particle formation”, In: Soot Formation in Combustion, Springer Berlin Heidelberg, Germany vol. 59, 165-192 (1994).22 Allen, M.T., Yetter, R.A., Dryer, F.L., “High pressure studies of moist carbon monoxide/nitrous oxide kinetics”, Combust. Flame, 109, 449-470 (1997).23 Westmoreland, P.R., Howard, J.B., Longwell, J.P., “Prediction of rate constants for combustion and pyrolysis reactions by bimolecular QRRK”, AIChE J., 32, 1971-1979 (1986).24 Rasmussen, C.L., Hansen, J., Marshall, J., Glarborg, P., “Experimental measurements and kinetic modeling of CO/H2/O2/NOx conversion at high pressure”, Int. J. Chem. Kinet., 40 (8), 454-480 (2008).25 You, X., Wang, H., Goos, E., Sung, C.J., Klippenstein, S.J., “Reaction kinetics of CO + HO2→ products: Ab initio transition state theory study with master equation modeling”, J. Phys. Chem. A., 111, 4031-4042 (2007). 26 Yu, H.G., Muckerman, J.T., Francisco, J.S., “Direct ab initio dynamics study of the OH + HOCO reaction”, J. Phys. Chem. A., 109, 5230-5236 (2005).27 Nolte, J., Grussdorf, J., Temps, F., Wagner, H.G., “Kinetics of the reaction HOCO + O2 in the gas phase”, Z. Naturforsch. A., 48, 1234-1238 (1993).28 Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J., “Evaluated kinetic data for combustion modeling: Supplement II”, J. Phys. Chem. Ref. Data, 34, 757-1397 (2005).29 Wang, H., Frenklach, M., “Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals”, J. Phys. Chem., 98, 11465-11478 (1994).30 Glarborg, P., Miller, J.A., Kee, R.J., “Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors”, Combust. Flame, 65, 177-202 (1986).31 Laufer, A.H., Bass, A.M., “Rate constants of the combination of methyl radicals with nitric oxide and oxygen”, Chem. Phys. Lett., 16, 151-158 (1977).32 Koch, M., Temps, F., Wagener, R., Wagner, H.G., “Kinetics of the reactions of CH2 (ã1A1) with CH3C2H, HCN, CO2, N2O and COS”, Ber. Bunsenges Phys. Chem., 94, 645-650 (1990).33 Mehlmann, C., Frost, M.J., Heard, D.E., Orr, B.J., Nelson, P.F., “Rate constants for removal of CH (D)(v 0 and 1) by collisions with N2, CO, O2, NO and NO2 at 298 K and with CO2 at 296≤T/K≤873”, J. Chem. Soc. Faraday Trans., 92, 2335-2341 (1996).34 Frenklach, M., Yuan, T., Ramachandra, M.K., “Soot formation in binary hydrocarbon mixtures”, Energy Fuels, 2, 462-473 (1988).35 Smoluchowski, M.V., “Engineering biological structures of prescribed shape using self-assembling multi-cellular systems”, Z. Phys. Chem., 92, 129-132 (1971).36 Frenklach, M., Harris, S.J., “Aerosol dynamics modeling using the method of moments”, J. Colloid Interface Sci., 118, 252 (1987).37 Appel, J., Bockhorn, H., Frenklach, M., “Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons”, Combust. Flame, 121, 122-136 (2000).38 Harris, S.J., Weiner, A.M., Blint, R.J., “Formation of small aromatic molecules in a sooting ethylene flame”, Combust. Flame, 72, 91-109 (1988).39 Mendiara, T., Glarborg, P., “Re-burn chemistry in oxy-fuel combustion of methane”, Energy Fuels, 23, 3565-3572 (2009). |