中国化学工程学报 ›› 2022, Vol. 41 ›› Issue (1): 22-28.DOI: 10.1016/j.cjche.2021.10.025
Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan
收稿日期:
2021-06-30
修回日期:
2021-10-22
出版日期:
2022-01-28
发布日期:
2022-02-25
通讯作者:
Yi-An Zhu,E-mail address:yanzhu@ecust.edu.cn
基金资助:
Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan
Received:
2021-06-30
Revised:
2021-10-22
Online:
2022-01-28
Published:
2022-02-25
Contact:
Yi-An Zhu,E-mail address:yanzhu@ecust.edu.cn
Supported by:
摘要: Various scaling relations have long been established in the field of heterogeneous catalysis, but the resultant volcano curves inherently limit the catalytic performance of catalyst candidates. On the other hand, it is still very challenging to develop universal descriptors that can be used in various types of catalysts and reaction systems. For these reasons, several strategies have recently been proposed to break and rebuild scaling relations to go beyond the top of volcanoes. In this review, some previously proposed descriptors have been briefly introduced. Then, the strategies for breaking known and establishing new and more generalized scaling relations in complex catalytic systems have been summarized. Finally, the application of machine-learning techniques in identifying universal descriptors for future computational design and high-throughput screening of heterogeneous catalysts has been discussed.
Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations[J]. 中国化学工程学报, 2022, 41(1): 22-28.
Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 22-28.
[1] G. Ertl, Reactions at surfaces: From atoms to complexity (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 47(19) (2008) 3524–3535. [2] J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Jacobsen, Universality in heterogeneous catalysis, J. Catal. 209(2) (2002) 275– 278. [3] J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals, J. Chem. Phys. 120(21) (2004) 10240–10246. [4] H. Falsig, B. Hvolbaek, I.S. Kristensen, T. Jiang, T. Bligaard, T. Bligaard, C.H. Christensen, J.K. Nørskov, Trends in the catalytic CO oxidation activity of nanoparticles, Angew. Chem. Int. Ed. Engl. 47(26) (2008) 4835–4839. [5] T. Jiang, D.J. Mowbray, S. Dobrin, H. Falsig, B. Hvolbæk, T. Bligaard, J.K. Nørskov, Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces, J. Phys. Chem. C 113(24) (2009) 10548–10553. [6] F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T.R. Munter, P.G. Moses, E. Skúlason, T. Bligaard, T. Bligaard, J.K. Nørskov, Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces, Phys. Rev. Lett. 99(1) (2007) 016105. [7] S.H. Liu, Z.J. Zhao, C.S. Yang, S.J. Zha, K.M. Neyman, F. Studt, J.L. Gong, Adsorption preference determines segregation direction: A shortcut to more realistic surface models of alloy catalysts, ACS Catal. 9(6) (2019) 5011–5018. [8] P.S. Kirlin, B.C. Gates, Activation of the C-C bond provides a molecular basis for structure sensitivity in metal catalysis, Nature 325(6099) (1987) 38–40. [9] A.B. Getsoian, Z. Zhai, A.T. Bell, Band-gap energy as a descriptor of catalytic activity for propene oxidation over mixed metal oxide catalysts, J. Am. Chem. Soc. 136(39) (2014) 13684–13697. [10] V. Fung, F.F. Tao, D.E. Jiang, General structure-reactivity relationship for oxygen on transition-metal oxides, J. Phys. Chem. Lett. 8(10) (2017) 2206– 2211. [11] E.M. Fernández, P.G. Moses, A. Toftelund, H.A. Hansen, J.I. Martínez, F. AbildPedersen, J. Kleis, B. Hinnemann, J. Rossmeisl, T. Bligaard, J.K. Nørskov, Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces, Angew. Chem. Int. Ed. Engl. 47(25) (2008) 4683–4686. [12] C.L. Kane, E.J. Mele, Electron interactions and scaling relations for optical excitations in carbon nanotubes, Phys. Rev. Lett. 93(19) (2004) 197402. [13] R. Michalsky, Y.J. Zhang, A.A. Peterson, Trends in the hydrogen evolution activity of metal carbide catalysts, ACS Catal. 4(5) (2014) 1274–1278. [14] R. Michalsky, Y.J. Zhang, A.J. Medford, A.A. Peterson, Departures from the adsorption energy scaling relations for metal carbide catalysts, J. Phys. Chem. C 118(24) (2014) 13026–13034. [15] Y. Mao, J.F. Chen, H.F. Wang, P. Hu, Catalyst screening: Refinement of the origin of the volcano curve and its implication in heterogeneous catalysis, Chin. J. Catal. 36(9) (2015) 1596–1605. [16] A. Michaelides, Z.P. Liu, C.J. Zhang, A. Alavi, D.A. King, P. Hu, Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces, J. Am. Chem. Soc. 125(13) (2003) 3704– 3705. [17] J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, Science 334(6061) (2011) 1383–1385. [18] X.F. Ma, H.L. Xin, Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts, Phys. Rev. Lett. 118(3) (2017) 036101. [19] J.K. Nørskov, Electronic factors in catalysis, Prog. Surf. Sci. 38(2) (1991) 103– 144. [20] B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals, Nature 376(6537) (1995) 238–240. [21] A. Nilsson, L.G.M. Pettersson, B. Hammer, T. Bligaard, C.H. Christensen, J.K. Nørskov, The electronic structure effect in heterogeneous catalysis, Catal. Lett. 100(3–4) (2005) 111–114. [22] B. Hammer, Y. Morikawa, J.K. Norskov, CO chemisorption at metal surfaces and overlayers, Phys. Rev. Lett. 76(12) (1996) 2141–2144. [23] J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, T. Bligaard, Density functional theory in surface chemistry and catalysis, PNAS 108(3) (2011) 937– 943. [24] B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis— calculations and concepts, Adv. Catal. 45(2000) 71–129. [25] A. Logadottir, T.H. Rod, J.K. Nørskov, B. Hammer, S. Dahl, C.J.H. Jacobsen, The brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts, J. Catal. 197(2) (2001) 229–231. [26] T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis, J. Catal. 224(1) (2004) 206–217. [27] D. Loffreda, F. Delbecq, F. Vigné, P. Sautet, Fast prediction of selectivity in heterogeneous catalysis from extended Brønsted-Evans-Polanyi relations: A theoretical insight, Angew. Chem. Int. Ed. Engl. 48(47) (2009) 8978–8980. [28] B. Yang, R. Burch, C. Hardacre, G. Headdock, P. Hu, Correction to understanding the optimal adsorption energies for catalyst screening in heterogeneous catalysis, ACS Catal. 4(3) (2014) 943. [29] J.L.C. Fajín, M.N.D.S. Cordeiro, F. Illas, J.R.B. Gomes, Generalized BrønstedEvans-Polanyi relationships and descriptors for O-H bond cleavage of organic molecules on transition metal surfaces, J. Catal. 313(2014) 24–33. [30] B. Han, A. Grimaud, L. Giordano, W.T. Hong, O. Diaz-Morales, L. Yueh-Lin, J. Hwang, N. Charles, K.A. Stoerzinger, W. Yang, M.T.M. Koper, Y. Shao-Horn, Iron-based perovskites for catalyzing oxygen evolution reaction, J. Phys. Chem. C 122(15) (2018) 8445–8454. [31] A. Vojvodic, J.K. Nørskov, Optimizing perovskites for the water-splitting reaction, Science 334(6061) (2011) 1355–1356. [32] J. Wang, Y. Gao, D.J. Chen, J.P. Liu, Z.B. Zhang, Z.P. Shao, F. Ciucci, Water splitting with an enhanced bifunctional double perovskite, ACS Catal. 8(1) (2018) 364–371. [33] X. Han, Y. Yu, Y. Huang, D. Liu, B. Zhang, Photogenerated carriers boost water splitting activity over transition metal/semiconducting metal oxide bifunctional electrocatalysts, ACS Catal. 7(10) (2017) 6464–6470. [34] N.I. Kim, Y.J. Sa, T.S. Yoo, S.R. Choi, R.A. Afzal, T. Choi, Y.S. Seo, K.S. Lee, J.Y. Hwang, W.S. Choi, S.H. Joo, J.Y. Park, Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions, Sci. Adv. 4(6) (2018) eaap9360. [35] S. Jung, C.C.L. McCrory, I.M. Ferrer, J.C. Peters, T.F. Jaramillo, Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction, J. Mater. Chem. A 4(8) (2016) 3068–3076. [36] X.E. Liu, M. Park, M.G. Kim, S. Gupta, X.J. Wang, G. Wu, J. Cho, Highperformance non-spinel cobalt-manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc-air batteries, Nano Energy 20(2016) 315–325. [37] H. Chang, E. Bjørgum, O. Mihai, J. Yang, H.L. Lein, T. Grande, S. Raaen, Y.A. Zhu, A. Holmen, D. Chen, Effects of oxygen mobility in La–Fe-based perovskites on the catalytic activity and selectivity of methane oxidation, ACS Catal. 10(2020) 3707–3719. [38] A.M. Deml, V. Stevanović, C.L. Muhich, C.B. Musgrave, R. O’Hayre, Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics, Energy Environ. Sci. 7(6) (2014) 1996. [39] C. Jia, X. Wang, W. Zhong, Z. Wang, O.V. Prezhdo, Y. Luo, J. Jiang, Catalytic chemistry predicted by a charge polarization descriptor: Synergistic O2 activation and CO oxidation by Au-Cu bimetallic clusters on TiO2(101), ACS Appl. Mater. Interfaces 11(9) (2019) 9629–9640. [40] C.F. Dickens, J.H. Montoya, A.R. Kulkarni, M. Bajdich, J.K. Nørskov, An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces, Surf. Sci. 681(2019) 122–129. [41] J.J. Carberry, Structure sensitivity in heterogeneous catalysis: Activity and yield/selectivity, J. Catal. 114(2) (1988) 277–283. [42] F. Calle-Vallejo, D. Loffreda, M.T. Koper, P. Sautet, Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers, Nat. Chem. 7(5) (2015) 403–410. [43] H.B. Tao, L.W. Fang, J.Z. Chen, H.B. Yang, J.J. Gao, J.W. Miao, S.L. Chen, B. Liu, Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction, J. Am. Chem. Soc. 138(31) (2016) 9978– 9985. [44] J.K. Nørskov, T. Bligaard, B. Hvolbaek, F. Abild-Pedersen, I. Chorkendorff, C.H. Christensen, The nature of the active site in heterogeneous metal catalysis, Chem. Soc. Rev. 37(10) (2008) 2163–2171. [45] F.H.B. Lima, J. Zhang, M.H. Shao, K. Sasaki, M.B. Vukmirovic, E.A. Ticianelli, R.R. Adzic, Catalytic activity–d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions, J. Phys. Chem. C 111(1) (2007) 404–410. [46] J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 5(11) (2006) 909–913. [47] Y.J. Zhang, V. Sethuraman, R. Michalsky, Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts, ACS Catal. 4(10) (2014) 3742–3748. [48] E.R. Cave, C. Shi, K.P. Kuhl, T. Hatsukade, T.F. Jaramillo, Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals, ACS Catal. 8(4) (2018) 3035–3040. [49] Y. Li, W. Cheng, Z.J. Sui, X.G. Zhou, D. Chen, W.K. Yuan, Y.A. Zhu, Origin of chemisorption energy scaling relations over perovskite surfaces, J. Phys. Chem. C 123(46) (2019) 28275–28283. [50] S. Vajda, M.J. Pellin, J.P. Greeley, C.L. Marshall, L.A. Curtiss, G.A. Ballentine, J.W. Elam, S. Catillon-Mucherie, P.C. Redfern, F. Mehmood, P. Zapol, Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane, Nat. Mater. 8(3) (2009) 213–216. [51] E. Vorobyeva, E. Fako, Z.P. Chen, S.M. Collins, D. Johnstone, P.A. Midgley, R. Hauert, O.V. Safonova, G. Vilé, N. López, S. Mitchell, J. Pérez-Ramírez, Atom-byatom resolution of structure–function relations over low-nuclearity metal catalysts, Angew. Chem. Int. Ed. 58(26) (2019) 8724–8729. [52] M.S. Frei, C. Mondelli, R. García-Muelas, K.S. Kley, B. Puértolas, N. López, O.V. Safonova, J.A. Stewart, D. Curulla Ferré, J. Pérez-Ramírez, Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation, Nat. Commun. 10(1) (2019) 3377. [53] D. Albani, M. Shahrokhi, Z. Chen, S. Mitchell, R. Hauert, N. López, J. PérezRamírez, Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation, Nat. Commun. 9(1) (2018) 2634. [54] G. Sun, Z.J. Zhao, R. Mu, S. Zha, L. Li, S. Chen, K. Zang, J. Luo, Z. Li, S.C. Purdy, A.J. Kropf, J.T. Miller, L. Zeng, J. Gong, Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation, Nat. Commun. 9(1) (2018) 4454. [55] B. Zandkarimi, A.N. Alexandrova, Dynamics of subnanometer Pt clusters can break the scaling relationships in catalysis, J. Phys. Chem. Lett. 10(3) (2019) 460–467. [56] Q.Y. Chang, K.Q. Wang, Z.J. Sui, X.G. Zhou, D. Chen, W.K. Yuan, Y.A. Zhu, Rational design of single-atom-doped Ga2O3 catalysts for propane dehydrogenation: Breaking through volcano plot by lewis acid-base interactions, ACS Catal. 11(9) (2021) 5135–5147. [57] L. Xiong, X. Zhang, H. Yuan, J. Wang, X. Yuan, Y. Lian, H. Jin, H. Sun, Z. Deng, D. Wang, J. Hu, H. Hu, J. Choi, J. Li, Y. Chen, J. Zhong, J. Guo, M.H. Rümmerli, L. Xu, Y. Peng, Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production, Angew. Chem. Int. Ed. Engl. 60(5) (2021) 2508–2518. [58] P. Gono, A. Pasquarello, Oxygen evolution reaction: Bifunctional mechanism breaking the linear scaling relationship, J. Chem. Phys. 152(10) (2020) 104712. [59] P.K. Wang, F. Chang, W.B. Gao, J.P. Guo, G.T. Wu, T. He, P. Chen, Breaking scaling relations to achieve low-temperature ammonia synthesis through LiHmediated nitrogen transfer and hydrogenation, Nat. Chem. 9(1) (2017) 64–70. [60] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater. 10(12) (2011) 911–921. [61] F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl, K. Morgenstern, D. Loffreda, P. Sautet, W. Schuhmann, A.S. Bandarenka, Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors, Science 350(6257) (2015) 185–189. [62] Y.L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, D. Morgan, Prediction of solid oxide fuel cell cathode activity with first-principles descriptors, Energy Environ. Sci. 4(10) (2011) 3966. [63] Z.J. Zhao, S.H. Liu, S.J. Zha, C. Dongfang, F. Studt, G. Henkelman, J.L. Gong, Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors, Nat. Rev. Mater. 4(12) (2019) 792–804. [64] A. Grimaud, K.J. May, C.E. Carlton, Y.L. Lee, M. Risch, W.T. Hong, J. Zhou, Y. Shao-Horn, Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution, Nat. Commun. 4(2013) 2439. [65] R. Jinnouchi, R. Asahi, Predicting catalytic activity of nanoparticles by a DFTaided machine-learning algorithm, J. Phys. Chem. Lett. 8(17) (2017) 4279– 4283. [66] Z. Li, S.W. Wang, W.S. Chin, L.E. Achenie, H.L. Xin, High-throughput screening of bimetallic catalysts enabled by machine learning, J. Mater. Chem. A 5(46) (2017) 24131–24138. [67] I. Takigawa, K.I. Shimizu, K. Tsuda, Machine-learning prediction of the d-band center for metals and bimetals, RSC Adv 6(58) (2016) 52587. [68] B.R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, L.M. Ghiringhelli, Uncovering structure-property relationships of materials by subgroup discovery, New J. Phys. 19(1) (2017) 013031. [69] R.H. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M. Ghiringhelli, SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates, Phys. Rev. Mater. 2(8) (2018) 083802. [70] C.J. Bartel, C. Sutton, B.R. Goldsmith, R.H. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Sci. Adv. 5(2) (2019) aav0693. [71] L.M. Ghiringhelli, J. Vybiral, E. Ahmetcik, R.H. Ouyang, S.V. Levchenko, C. Draxl, M. Scheffler, Learning physical descriptors for materials science by compressed sensing, New J. Phys. 19(2) (2017) 023017. [72] A. Corma, J.M. Serra, P. Serna, M. Moliner, Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models, J. Catal. 232(2) (2005) 335–341. [73] E.J. Ras, B. McKay, G. Rothenberg, Understanding catalytic biomass conversion through data mining, Top. Catal. 53(15–18) (2010) 1202–1208. [74] N. Madaan, N.R. Shiju, G. Rothenberg, Predicting the performance of oxidation catalysts using descriptor models, Catal. Sci. Technol. 6(1) (2016) 125–133. [75] K.C. Leonard, A.J. Bard, Pattern recognition correlating materials properties of the elements to their kinetics for the hydrogen evolution reaction J. Am. Chem. Soc. 135(42) (2013) 15885–15889, Phys. Chem. C 123(46) (2019) 28275– 28283. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 258
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 210
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||