[1] G. Ertl, Reactions at surfaces: From atoms to complexity (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 47(19) (2008) 3524–3535. [2] J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Jacobsen, Universality in heterogeneous catalysis, J. Catal. 209(2) (2002) 275– 278. [3] J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals, J. Chem. Phys. 120(21) (2004) 10240–10246. [4] H. Falsig, B. Hvolbaek, I.S. Kristensen, T. Jiang, T. Bligaard, T. Bligaard, C.H. Christensen, J.K. Nørskov, Trends in the catalytic CO oxidation activity of nanoparticles, Angew. Chem. Int. Ed. Engl. 47(26) (2008) 4835–4839. [5] T. Jiang, D.J. Mowbray, S. Dobrin, H. Falsig, B. Hvolbæk, T. Bligaard, J.K. Nørskov, Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces, J. Phys. Chem. C 113(24) (2009) 10548–10553. [6] F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T.R. Munter, P.G. Moses, E. Skúlason, T. Bligaard, T. Bligaard, J.K. Nørskov, Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces, Phys. Rev. Lett. 99(1) (2007) 016105. [7] S.H. Liu, Z.J. Zhao, C.S. Yang, S.J. Zha, K.M. Neyman, F. Studt, J.L. Gong, Adsorption preference determines segregation direction: A shortcut to more realistic surface models of alloy catalysts, ACS Catal. 9(6) (2019) 5011–5018. [8] P.S. Kirlin, B.C. Gates, Activation of the C-C bond provides a molecular basis for structure sensitivity in metal catalysis, Nature 325(6099) (1987) 38–40. [9] A.B. Getsoian, Z. Zhai, A.T. Bell, Band-gap energy as a descriptor of catalytic activity for propene oxidation over mixed metal oxide catalysts, J. Am. Chem. Soc. 136(39) (2014) 13684–13697. [10] V. Fung, F.F. Tao, D.E. Jiang, General structure-reactivity relationship for oxygen on transition-metal oxides, J. Phys. Chem. Lett. 8(10) (2017) 2206– 2211. [11] E.M. Fernández, P.G. Moses, A. Toftelund, H.A. Hansen, J.I. Martínez, F. AbildPedersen, J. Kleis, B. Hinnemann, J. Rossmeisl, T. Bligaard, J.K. Nørskov, Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces, Angew. Chem. Int. Ed. Engl. 47(25) (2008) 4683–4686. [12] C.L. Kane, E.J. Mele, Electron interactions and scaling relations for optical excitations in carbon nanotubes, Phys. Rev. Lett. 93(19) (2004) 197402. [13] R. Michalsky, Y.J. Zhang, A.A. Peterson, Trends in the hydrogen evolution activity of metal carbide catalysts, ACS Catal. 4(5) (2014) 1274–1278. [14] R. Michalsky, Y.J. Zhang, A.J. Medford, A.A. Peterson, Departures from the adsorption energy scaling relations for metal carbide catalysts, J. Phys. Chem. C 118(24) (2014) 13026–13034. [15] Y. Mao, J.F. Chen, H.F. Wang, P. Hu, Catalyst screening: Refinement of the origin of the volcano curve and its implication in heterogeneous catalysis, Chin. J. Catal. 36(9) (2015) 1596–1605. [16] A. Michaelides, Z.P. Liu, C.J. Zhang, A. Alavi, D.A. King, P. Hu, Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces, J. Am. Chem. Soc. 125(13) (2003) 3704– 3705. [17] J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, Science 334(6061) (2011) 1383–1385. [18] X.F. Ma, H.L. Xin, Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts, Phys. Rev. Lett. 118(3) (2017) 036101. [19] J.K. Nørskov, Electronic factors in catalysis, Prog. Surf. Sci. 38(2) (1991) 103– 144. [20] B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals, Nature 376(6537) (1995) 238–240. [21] A. Nilsson, L.G.M. Pettersson, B. Hammer, T. Bligaard, C.H. Christensen, J.K. Nørskov, The electronic structure effect in heterogeneous catalysis, Catal. Lett. 100(3–4) (2005) 111–114. [22] B. Hammer, Y. Morikawa, J.K. Norskov, CO chemisorption at metal surfaces and overlayers, Phys. Rev. Lett. 76(12) (1996) 2141–2144. [23] J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, T. Bligaard, Density functional theory in surface chemistry and catalysis, PNAS 108(3) (2011) 937– 943. [24] B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis— calculations and concepts, Adv. Catal. 45(2000) 71–129. [25] A. Logadottir, T.H. Rod, J.K. Nørskov, B. Hammer, S. Dahl, C.J.H. Jacobsen, The brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts, J. Catal. 197(2) (2001) 229–231. [26] T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis, J. Catal. 224(1) (2004) 206–217. [27] D. Loffreda, F. Delbecq, F. Vigné, P. Sautet, Fast prediction of selectivity in heterogeneous catalysis from extended Brønsted-Evans-Polanyi relations: A theoretical insight, Angew. Chem. Int. Ed. Engl. 48(47) (2009) 8978–8980. [28] B. Yang, R. Burch, C. Hardacre, G. Headdock, P. Hu, Correction to understanding the optimal adsorption energies for catalyst screening in heterogeneous catalysis, ACS Catal. 4(3) (2014) 943. [29] J.L.C. Fajín, M.N.D.S. Cordeiro, F. Illas, J.R.B. Gomes, Generalized BrønstedEvans-Polanyi relationships and descriptors for O-H bond cleavage of organic molecules on transition metal surfaces, J. Catal. 313(2014) 24–33. [30] B. Han, A. Grimaud, L. Giordano, W.T. Hong, O. Diaz-Morales, L. Yueh-Lin, J. Hwang, N. Charles, K.A. Stoerzinger, W. Yang, M.T.M. Koper, Y. Shao-Horn, Iron-based perovskites for catalyzing oxygen evolution reaction, J. Phys. Chem. C 122(15) (2018) 8445–8454. [31] A. Vojvodic, J.K. Nørskov, Optimizing perovskites for the water-splitting reaction, Science 334(6061) (2011) 1355–1356. [32] J. Wang, Y. Gao, D.J. Chen, J.P. Liu, Z.B. Zhang, Z.P. Shao, F. Ciucci, Water splitting with an enhanced bifunctional double perovskite, ACS Catal. 8(1) (2018) 364–371. [33] X. Han, Y. Yu, Y. Huang, D. Liu, B. Zhang, Photogenerated carriers boost water splitting activity over transition metal/semiconducting metal oxide bifunctional electrocatalysts, ACS Catal. 7(10) (2017) 6464–6470. [34] N.I. Kim, Y.J. Sa, T.S. Yoo, S.R. Choi, R.A. Afzal, T. Choi, Y.S. Seo, K.S. Lee, J.Y. Hwang, W.S. Choi, S.H. Joo, J.Y. Park, Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions, Sci. Adv. 4(6) (2018) eaap9360. [35] S. Jung, C.C.L. McCrory, I.M. Ferrer, J.C. Peters, T.F. Jaramillo, Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction, J. Mater. Chem. A 4(8) (2016) 3068–3076. [36] X.E. Liu, M. Park, M.G. Kim, S. Gupta, X.J. Wang, G. Wu, J. Cho, Highperformance non-spinel cobalt-manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc-air batteries, Nano Energy 20(2016) 315–325. [37] H. Chang, E. Bjørgum, O. Mihai, J. Yang, H.L. Lein, T. Grande, S. Raaen, Y.A. Zhu, A. Holmen, D. Chen, Effects of oxygen mobility in La–Fe-based perovskites on the catalytic activity and selectivity of methane oxidation, ACS Catal. 10(2020) 3707–3719. [38] A.M. Deml, V. Stevanović, C.L. Muhich, C.B. Musgrave, R. O’Hayre, Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics, Energy Environ. Sci. 7(6) (2014) 1996. [39] C. Jia, X. Wang, W. Zhong, Z. Wang, O.V. Prezhdo, Y. Luo, J. Jiang, Catalytic chemistry predicted by a charge polarization descriptor: Synergistic O2 activation and CO oxidation by Au-Cu bimetallic clusters on TiO2(101), ACS Appl. Mater. Interfaces 11(9) (2019) 9629–9640. [40] C.F. Dickens, J.H. Montoya, A.R. Kulkarni, M. Bajdich, J.K. Nørskov, An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces, Surf. Sci. 681(2019) 122–129. [41] J.J. Carberry, Structure sensitivity in heterogeneous catalysis: Activity and yield/selectivity, J. Catal. 114(2) (1988) 277–283. [42] F. Calle-Vallejo, D. Loffreda, M.T. Koper, P. Sautet, Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers, Nat. Chem. 7(5) (2015) 403–410. [43] H.B. Tao, L.W. Fang, J.Z. Chen, H.B. Yang, J.J. Gao, J.W. Miao, S.L. Chen, B. Liu, Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction, J. Am. Chem. Soc. 138(31) (2016) 9978– 9985. [44] J.K. Nørskov, T. Bligaard, B. Hvolbaek, F. Abild-Pedersen, I. Chorkendorff, C.H. Christensen, The nature of the active site in heterogeneous metal catalysis, Chem. Soc. Rev. 37(10) (2008) 2163–2171. [45] F.H.B. Lima, J. Zhang, M.H. Shao, K. Sasaki, M.B. Vukmirovic, E.A. Ticianelli, R.R. Adzic, Catalytic activity–d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions, J. Phys. Chem. C 111(1) (2007) 404–410. [46] J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 5(11) (2006) 909–913. [47] Y.J. Zhang, V. Sethuraman, R. Michalsky, Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts, ACS Catal. 4(10) (2014) 3742–3748. [48] E.R. Cave, C. Shi, K.P. Kuhl, T. Hatsukade, T.F. Jaramillo, Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals, ACS Catal. 8(4) (2018) 3035–3040. [49] Y. Li, W. Cheng, Z.J. Sui, X.G. Zhou, D. Chen, W.K. Yuan, Y.A. Zhu, Origin of chemisorption energy scaling relations over perovskite surfaces, J. Phys. Chem. C 123(46) (2019) 28275–28283. [50] S. Vajda, M.J. Pellin, J.P. Greeley, C.L. Marshall, L.A. Curtiss, G.A. Ballentine, J.W. Elam, S. Catillon-Mucherie, P.C. Redfern, F. Mehmood, P. Zapol, Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane, Nat. Mater. 8(3) (2009) 213–216. [51] E. Vorobyeva, E. Fako, Z.P. Chen, S.M. Collins, D. Johnstone, P.A. Midgley, R. Hauert, O.V. Safonova, G. Vilé, N. López, S. Mitchell, J. Pérez-Ramírez, Atom-byatom resolution of structure–function relations over low-nuclearity metal catalysts, Angew. Chem. Int. Ed. 58(26) (2019) 8724–8729. [52] M.S. Frei, C. Mondelli, R. García-Muelas, K.S. Kley, B. Puértolas, N. López, O.V. Safonova, J.A. Stewart, D. Curulla Ferré, J. Pérez-Ramírez, Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation, Nat. Commun. 10(1) (2019) 3377. [53] D. Albani, M. Shahrokhi, Z. Chen, S. Mitchell, R. Hauert, N. López, J. PérezRamírez, Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation, Nat. Commun. 9(1) (2018) 2634. [54] G. Sun, Z.J. Zhao, R. Mu, S. Zha, L. Li, S. Chen, K. Zang, J. Luo, Z. Li, S.C. Purdy, A.J. Kropf, J.T. Miller, L. Zeng, J. Gong, Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation, Nat. Commun. 9(1) (2018) 4454. [55] B. Zandkarimi, A.N. Alexandrova, Dynamics of subnanometer Pt clusters can break the scaling relationships in catalysis, J. Phys. Chem. Lett. 10(3) (2019) 460–467. [56] Q.Y. Chang, K.Q. Wang, Z.J. Sui, X.G. Zhou, D. Chen, W.K. Yuan, Y.A. Zhu, Rational design of single-atom-doped Ga2O3 catalysts for propane dehydrogenation: Breaking through volcano plot by lewis acid-base interactions, ACS Catal. 11(9) (2021) 5135–5147. [57] L. Xiong, X. Zhang, H. Yuan, J. Wang, X. Yuan, Y. Lian, H. Jin, H. Sun, Z. Deng, D. Wang, J. Hu, H. Hu, J. Choi, J. Li, Y. Chen, J. Zhong, J. Guo, M.H. Rümmerli, L. Xu, Y. Peng, Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production, Angew. Chem. Int. Ed. Engl. 60(5) (2021) 2508–2518. [58] P. Gono, A. Pasquarello, Oxygen evolution reaction: Bifunctional mechanism breaking the linear scaling relationship, J. Chem. Phys. 152(10) (2020) 104712. [59] P.K. Wang, F. Chang, W.B. Gao, J.P. Guo, G.T. Wu, T. He, P. Chen, Breaking scaling relations to achieve low-temperature ammonia synthesis through LiHmediated nitrogen transfer and hydrogenation, Nat. Chem. 9(1) (2017) 64–70. [60] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater. 10(12) (2011) 911–921. [61] F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl, K. Morgenstern, D. Loffreda, P. Sautet, W. Schuhmann, A.S. Bandarenka, Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors, Science 350(6257) (2015) 185–189. [62] Y.L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, D. Morgan, Prediction of solid oxide fuel cell cathode activity with first-principles descriptors, Energy Environ. Sci. 4(10) (2011) 3966. [63] Z.J. Zhao, S.H. Liu, S.J. Zha, C. Dongfang, F. Studt, G. Henkelman, J.L. Gong, Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors, Nat. Rev. Mater. 4(12) (2019) 792–804. [64] A. Grimaud, K.J. May, C.E. Carlton, Y.L. Lee, M. Risch, W.T. Hong, J. Zhou, Y. Shao-Horn, Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution, Nat. Commun. 4(2013) 2439. [65] R. Jinnouchi, R. Asahi, Predicting catalytic activity of nanoparticles by a DFTaided machine-learning algorithm, J. Phys. Chem. Lett. 8(17) (2017) 4279– 4283. [66] Z. Li, S.W. Wang, W.S. Chin, L.E. Achenie, H.L. Xin, High-throughput screening of bimetallic catalysts enabled by machine learning, J. Mater. Chem. A 5(46) (2017) 24131–24138. [67] I. Takigawa, K.I. Shimizu, K. Tsuda, Machine-learning prediction of the d-band center for metals and bimetals, RSC Adv 6(58) (2016) 52587. [68] B.R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, L.M. Ghiringhelli, Uncovering structure-property relationships of materials by subgroup discovery, New J. Phys. 19(1) (2017) 013031. [69] R.H. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M. Ghiringhelli, SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates, Phys. Rev. Mater. 2(8) (2018) 083802. [70] C.J. Bartel, C. Sutton, B.R. Goldsmith, R.H. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Sci. Adv. 5(2) (2019) aav0693. [71] L.M. Ghiringhelli, J. Vybiral, E. Ahmetcik, R.H. Ouyang, S.V. Levchenko, C. Draxl, M. Scheffler, Learning physical descriptors for materials science by compressed sensing, New J. Phys. 19(2) (2017) 023017. [72] A. Corma, J.M. Serra, P. Serna, M. Moliner, Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models, J. Catal. 232(2) (2005) 335–341. [73] E.J. Ras, B. McKay, G. Rothenberg, Understanding catalytic biomass conversion through data mining, Top. Catal. 53(15–18) (2010) 1202–1208. [74] N. Madaan, N.R. Shiju, G. Rothenberg, Predicting the performance of oxidation catalysts using descriptor models, Catal. Sci. Technol. 6(1) (2016) 125–133. [75] K.C. Leonard, A.J. Bard, Pattern recognition correlating materials properties of the elements to their kinetics for the hydrogen evolution reaction J. Am. Chem. Soc. 135(42) (2013) 15885–15889, Phys. Chem. C 123(46) (2019) 28275– 28283. |