[1] D.Y. Liu, Fluid Dynamics of Two-Phase Systems, Higher Education Publishing House, 1993. (in Chinese) [2] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978. [3] L. van Winjgaarden, Hydrodynamic interaction between gas bubbles in liquid, J. Fluid Mech. 77(1) (1976) 27–53. [4] J.T. Kuo, G.B. Walls, Flow of bubbles through nozzles, Int. J. Multiphase Flow 14(5) (1988) 547–564. [5] M.R. Maxey, J.J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26(1983) 883–889. [6] N. Zuber, On the dispersed two-phase flow in the laminar flow regime, Chem. Eng. Sci. 19(1964) 897–917. [7] T.L. Cook, F.H. Harlow, Virtual mass in multiphase flow, Int. J. Multiphase Flow 10(6) (1984) 691–696. [8] R.T. Lahey Jr, L.Y. Cheng, D.A. Drew, J.E. Flaherty, The effect of virtual mass on the numerical stability of accelerating two-phase flows, Int. J. Multiphase Flow 6(1980) 281–294. [9] A. Sokolichin, G. Eigenberger, Gas-liquid flow bubble columns and loop reactors. Part I. Detailed modelling and numerical simulation, Chem. Eng. Sci. 49(24B) (1994) 5735–5746. [10] W.C. Lin, Z.-S. Mao, J.Y. Chen, Hydrodynamic studies on loop reactors. (II) Airlift loop reactors, Chin. J. Chem. Eng. 5(1) (1997) 11–22. [11] S.P. Pudasaini, A general two-phase debris flow model, J. Geophys. Res. 117(2012) F03010. [12] S.P. Pudasaini, A fully analytical model for virtual mass force in mixture flows, Int. J. Multiphase Flow 113(2019) 142–152. [13] M. Simcik, M.C. Ruzicka, J. Drahoš, Computing the added mass of dispersed particles, Chem. Eng. Sci. 63(2008) 4580–4595. [14] J. Niemann, E. Laurien, Computing virtual mass by direct numerical simulation, Zeit. Angew. Math. Mech. 81(2001) S555–S556. [15] A.K.R. Salibindla, A.U.M. Masuk, R. Ni, Experimental investigation of the acceleration statistics and added-mass force of deformable bubbles in intense turbulence, J. Fluid Mech. 912(2021) A50. [16] S. Zoghlami, S.C. Béguin, A. Teyssedou, A.D. Scott, L. Bornard, S. Etienne, Bubble cloud configuration effect on the added mass, Phys. Fluids 33(2021) 053304. [17] Z.-S. Mao, C. Yang, Challenges in study of single particles and particle swarms, Chin. J. Chem. Eng. 17(4) (2009) 535–545. [18] G. Ryskin, L.G. Leal, Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique, J. Fluid Mech. 148(1984) 1–17. [19] D.S. Dandy, L.G. Leal, Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers, J. Fluid Mech. 208(1989) (1989) 161–192. [20] X.J. Li, Z.-S. Mao, The effect of surfactant on the motion of buoyancy-driven drop at intermediate Reynolds numbers: A numerical approach, J. Colloid Interface Sci. 240(1) (2001) 307–322. [21] I.H. Shames, Mechanics of Fluids, McGraw-Hill Book Co., New York, 1983, p. 143. [22] Z.-S. Mao, J.Y. Chen, Numerical solution of viscous flow past a solid sphere with the control volume formulation, Chin. J. Chem. Eng. 5(1997) 105–116. [23] Z.-S. Mao, Y.F. Wang, Numerical simulation of mass transfer in a spherical particle assemblage with the cell model, Powder Technol. 134(1–2) (2003) 145–155. [24] Z.-S. Mao, T.W. Li, J.Y. Chen, Numerical simulation of steady and transient mass transfer to a single drop dominated by external resistance, Int. J. Heat Mass Transfer 44(2001) 1235–1247. [25] Z.-S. Mao, Numerical simulation of viscous flow through spherical particle assemblage with the modified cell model, Chin. J. Chem. Eng. 10(2002) 149–162. [26] Z.-S. Mao, Cell model approach to motion of bubbles in swarm, Huagong Xuebao 58(5) (2007) 1155–1162. (in Chinese) [27] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Wiley and Sons, New York, 1980. [28] M.S. Kwauk, H.Z. Li, in: Handbook of Fluidization, Chemical Industry Press, Beijing, 2008, p. 106. (in Chinese) [29] L. Zhang, C. Yang, Z.-S. Mao, Unsteady motion of a single bubble in highly viscous liquid and empirical correlation of drag coefficient, Chem. Eng. Sci. 63(8) (2008) 2099–2106. [30] L. Zhang, C. Yang, Z.-S. Mao, An empirical correlation of drag coefficient for a single bubble rising in non-Newtonian liquids, Ind. Eng. Chem. Res. 47(23) (2008) 9767–9772. [31] W.Y. Wu, Fluid Mechanics, Peking University Press, Beijing II (1983) 217–218(in Chinese). |