1 Diwoky, R.J., “Continuous residuum coking by delayed coking process”, Oil & Gas Journal, 100 (35), 130-132 (2002). 2 Elliott, J.D., Stewart, M.D., “Residue upgrading with delayed coking”, Hydrocarbon Processing, 83 (11), 17-20 (2004). 3 Sawarkar, A.N., Pandit, A.B., Samant, S.D., Joshi, J.B., “Petroleum residue upgrading via delayed coking: A review”, Can. J. Chem. Eng., 85 (2), 1-24 (2007). 4 Qu, G.H., Huang, D.Z., Liang, W.J., “Role and prospects of delayed coking in CHINA’s petroleum processing”, Acta Petrolei Sinica (Petroleum Processing Section), 21 (3), 47-53 (2005). (in Chinese) 5 Chao, K.S., “Design consideration for long period running of delayed coker furnace”, Petroleum Refinery Engineering, 29 (11),29-33 (1999). (in Chinese) 6 Xiao, J.Z., Zhang, Y., Wang, L., Ni, H., Zhang, T., “Study on correlative methods for describing coking rate in furnace tubes”, Petroleum Science and Technology, 18 (3), 305-318 (2000). 7 Cheng, G., He, M., Li, D.L., “Model-free coking furnace adaptive control”, Hydrocarbon Processing, 78 (12), 73-76 (1999). 8 Abilov, A.G., Zeybek, Z., Tuzunalp, O., Telatar, Z., “Fuzzy temperature control of industrial refineries furnaces through combined feedforward/feedback multivariable cascade systems”, Chemical Engineering and Processing, 41 (1), 87-98 (2002). 9 Qiu, X.B., Yuan, J.Q., Wang, Z.F., “Feedforward variable structural proportional-integral-derivative for temperature control of polymerase chain reaction”, Chin. J. Chem. Eng., 14 (2), 200-206 (2006). 10 Qin, S.J., Badgwell, T.A., “A survey of industrial model predictive control technology”, Control Engineering Practice, 11 (7), 733-764 (2003). 11 Liu, Y.F., Wu, G., Wang, Y., Xue, M.S., Sun, D.M., “Application of stair-like modular multivariable DMC in atmospheric pyrochemical furnace”, Information and control, 31 (6), 508-512 (2002). (in Chinese) 12 Zhang, R.D., Wang, S.Q., “Predictive functional controller with a similar proportional integral optimal regulator structure: Comparison with traditional predictive functional controller and application to heavy oil coking equipment”, Chin. J. Chem. Eng., 15 (2), 247-253 (2007). 13 Yuan, P., Dynamic Model for the Process Control and Its Applications, China Petrochemical Press, Beijing (1998). (in Chinese) 14 Yuan, P., Zuo, X., Zheng, H.T., “State feedback predictive control”, Acta Automatica Sinica, 19 (5), 569-577 (1993). (in Chinese) 15 Xi, Y.G., Wang, F., “Multi-model method for predictive control of nonlinear system”, Acta Automatica Sinica, 22 (4), 456-461 (1996). (in Chinese) 16 Dougherty, D., Cooper, D., “A practical multiple model adaptive strategy for single-loop MPC”, Control Engineering Practice, 11 (2),141-159 (2003). 17 Aufderheide, B., Bequette, B.W., “Extension of dynamic matrix control to multiple models”, Comp. Chem. Eng., 27 (6/7), 1079-1096 (2003). 18 Porfírio, C.R., Neto, E.A., Odloak, D., “Multi-model predictive control of an industrial C3/C4 splitter”, Control Engineering Practice,11 (7), 765-779 (2003). 19 Xiao, J., Wang, L., Wei, X., Li, X., Zhang, T., “Process simulation for a tubular coking heater”, Petroleum Science and Technology, 18 (3), 319-333 (2000). 20 Abdelghani-Idrissi, M.A., Arbaoui, M.A., Estel, L., Richalet, J., “Predictive functional control of a counter current heat exchanger using convexity property”, Chemical Engineering and Processing,40 (5), 449-457 (2001). 21 Bouhenchir, H., Cabassud, M., Le Lann, M.V., “Predictive functional control for the temperature control of a chemical batch reactor”, Comp. Chem. Eng., 30 (6/7), 1141-1154 (2006). 22 Lundstrom, P., Lee, J.H., Morari, M.S., Skogestad, S., “Limitations of dynamic matrix control”, Comp. Chem. Eng., 19 (4), 409-421 (1995). |