[1] N.S. Lewis, Research opportunities to advance solar energy utilization, Science 351 (2016) d1920 [2] J. Dai, Y. Zhu, Y. Zhong, J. Miao, B. Lin, W. Zhou, Z. Shao, Enabling High and Stable Electrocatalytic Activity of Iron-Based Perovskite Oxides for Water Splitting by Combined Bulk Doping and Morphology Designing, Adv Mater Interfaces 6 (2018) 1801317 [3] O. Behar, Solar thermal power plants-A review of configurations and performance comparison, Renew. Sust. Energy Rev. 92 (2018) 608-627 [4] U. Pelay, L. Luo, Y. Fan, D. Stitou, M. Rood, Thermal energy storage systems for concentrated solar power plants, Renewable and Sustainable Energy Reviews 79 (2017) 82-100 [5] H. Peng, D. Zhang, X. Ling, Y. Li, Y. Wang, Q. Yu, X. She, Y. Li, Y. Ding, n-Alkanes Phase Change Materials and Their Microencapsulation for Thermal Energy Storage:A Critical Review, Energy Fuel. 32 (2018) 7262-7293 [6] A.J. Carrillo, J. Gonzalez-Aguilar, M. Romero, J.M. Coronado, Solar Energy on Demand:A Review on High Temperature Thermochemical Heat Storage Systems and Materials, Chem. Rev. 119 (2019) 4777-4816 [7] X. Chen, Z. Zhang, C. Qi, X. Ling, H. Peng, State of the art on the high-temperature thermochemical energy storage systems, Energy Convers. Manage. 177 (2018) 792-815 [8] B. Bulfin, J. Vieten, C. Agrafiotis, M. Roeb, C. Sattler, Applications and limitations of two step metal oxide thermochemical redox cycles; a review, Journal of materials chemistry. A, Materials for energy and sustainability 5 (2017) 18951-18966 [9] D. Shen, C.Y. Zhao, Thermal analysis of exothermic process in a magnesium hydride reactor with porous metals, Chem. Eng. Sci. 98 (2013) 273-281 [10] A. Shkatulov, Y. Aristov, Calcium hydroxide doped by KNO3 as a promising candidate for thermochemical storage of solar heat, Rsc Adv 7 (2017) 42929-42939 [11] N. Hatada, K. Shizume, T. Uda, Discovery of Rapid and Reversible Water Insertion in Rare Earth Sulfates:A New Process for Thermochemical Heat Storage, Adv. Mater. 29 (2017) 1606569 [12] X. Chen, X. Jin, Z. Liu, X. Ling, Y. Wang, Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping, Energy 155 (2018) 128-138 [13] C. Ortiz, J.M. Valverde, R. Chacartegui, L.A. Perez-Maqueda, P. Giménez, The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants, Renew. Sust. Energy Rev. 113 (2019) 109252 [14] X. Chen, D. Zhang, Y. Wang, X. Ling, X. Jin, The role of sensible heat in a concentrated solar power plant with thermochemical energy storage, Energy Convers. Manage. 190 (2019) 42-53 [15] C. Ortiz, J.M. Valverde, R. Chacartegui, L.A. Perez-Maqueda, Carbonation of Limestone Derived CaO for Thermochemical Energy Storage:From Kinetics to Process Integration in Concentrating Solar Plants, Acs Sustain Chem Eng 6 (2018) 6404-6417 [16] Z.H. Pan, C.Y. Zhao, Gas-solid thermochemical heat storage reactors for high-temperature applications, Energy 130 (2017) 155-173 [17] J. Blamey, E.J. Anthony, J. Wang, P.S. Fennell, The calcium looping cycle for large-scale CO2 capture, Prog. Energy Combust. 36 (2010) 260-279 [18] B. Sarrion, J.M. Valverde, A. Perejon, L. Perez-Maqueda, P.E. Sanchez-Jimenez, On the Multicycle Activity of Natural Limestone/Dolomite for Thermochemical Energy Storage of Concentrated Solar Power, Energy Technol-Ger 4 (2016) 1013-1019 [19] J. Yan, C.Y. Zhao, Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage, Appl. Energy 175 (2016) 277-284 [20] M. Schmidt, A. Gutierrez, M. Linder, Thermochemical energy storage with CaO/Ca(OH)2-Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor, Appl. Energy 188 (2017) 672-681 [21] M. Schmidt, M. Linder, Power generation based on the Ca(OH)2/CaO thermochemical storage system-Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design, Appl. Energy 203 (2017) 594-607 [22] J.A. Almendros-Ibáñez, M. Fernández-Torrijos, M. Díaz-Heras, J.F. Belmonte, C. Sobrino, A review of solar thermal energy storage in beds of particles:Packed and fluidized beds, Sol. Energy 192 (2019) 193-237 [23] J.M. Badie, C. Bonet, M. Faure, G. Flamant, R. Foro, D. Hernandez, 52 Decarbonation of calcite and phosphate rock in solar chemical reactors., Chem. Eng. Sci. 35 (1980) 413-420 [24] T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, K. Tejima, A twin fluid-bed reactor for removal of CO2 from combustion processes, Chem. Eng. Res. Des. 77 (1999) 62-68 [25] C. Tregambi, P. Salatino, R. Solimene, F. Montagnaro, An experimental characterization of Calcium Looping integrated with concentrated solar power, Chem. Eng. J. 331 (2018) 794-802 [26] C. Tregambi, F. Di Lauro, F. Montagnaro, P. Salatino, R. Solimene, 110th Anniversary:Calcium Looping Coupled with Concentrated Solar Power for Carbon Capture and Thermochemical Energy Storage, Ind. Eng. Chem. Res. 58 (2019) 21262-21272 [27] A. Cosquillo Mejia, S. Afflerbach, M. Linder, M. Schmidt, Experimental analysis of encapsulated CaO/Ca(OH)2 granules as thermochemical storage in a novel moving bed reactor, Appl. Therm. Eng. 169 (2020) 114961 [28] T. Esence, H. Benoit, D. Poncin, M. Tessonneaud, G. Flamant, A shallow cross-flow fluidized-bed solar reactor for continuous calcination processes, Sol. Energy 196 (2020) 389-398 [29] A. Meier, E. Bonaldi, G.M. Cella, W. Lipinski, D. Wuillemin, R. Palumbo, Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime, Energy 29 (2004) 811-821 [30] A. Meier, E. Bonaldi, G.M. Cella, W. Lipinski, D. Wuillemin, Solar chemical reactor technology for industrial production of lime, Sol. Energy 80 (2006) 1355-1362 [31] S. Abanades, L. André, Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination, Appl. Energy 212 (2018) 1310-1320 [32] A.J. Schrader, H.E. Bush, D. Ranjan, P.G. Loutzenhiser, Aluminum-doped calcium manganite particles for solar thermochemical energy storage:Reactor design, particle characterization, and heat and mass transfer modeling, Int. J. Heat Mass Tran. 152 (2020) 119461 [33] X. Chen, X. Jin, X. Ling, Y. Wang, Exergy Analysis of Concentrated Solar Power Plants with Thermochemical Energy Storage Based on Calcium Looping, Acs Sustain Chem Eng 8 (2020) 7928-7941 [34] X. Chen, X. Jin, X. Ling, Y. Wang, Indirect integration of thermochemical energy storage with the recompression supercritical CO2 Brayton cycle, Energy 209 (2020) 118452 [35] R. Han, J. Gao, S. Wei, Y. Su, C. Su, J. Li, Q. Liu, Y. Qin, High-performance CaO-based composites synthesized using a space-confined chemical vapor deposition strategy for thermochemical energy storage, Sol. Energy Mat. Sol. C. 206 (2020) 110346 [36] L. Yang, X. Ling, H. Peng, L. Duan, X. Chen, Starting characteristics of a novel high temperature flat heat pipe receiver in solar power tower plant based of"Flat-front"Startup model, Energy 183 (2019) 936-945 [37] J. Li, The energy-minimization multi-scale model of circulation fluidized beds, Chinese Science Bulletion 41 (1996) 263-264 [38] J. Ding, D. Gidaspow, A bubbling fluidization model using kinetic theory of granular flow, Aiche J. 36 (1990) 523-538 [39] D.J. Patil, M. van Sint Annaland, J.A.M. Kuipers, Critical comparison of hydrodynamic models for gas-solid fluidized beds-Part I:bubbling gas-solid fluidized beds operated with a jet, Chem. Eng. Sci. 60 (2005) 57-72 [40] N. Yang, W. Wang, W. Ge, L. Wang, J. Li, Simulation of Heterogeneous Structure in a Circulating Fluidized-Bed Riser by Combining the Two-Fluid Model with the EMMS Approach, Ind. Eng. Chem. Res. 43 (2004) 5548-5561 |