中国化学工程学报 ›› 2022, Vol. 43 ›› Issue (3): 2-13.DOI: 10.1016/j.cjche.2022.02.001
Ying Zhou1, Ruiying Li1, Zexuan Lv3, Jian Liu1,4, Hongjun Zhou2,3, Chunming Xu2
收稿日期:
2021-09-22
修回日期:
2022-02-05
出版日期:
2022-03-28
发布日期:
2022-04-28
通讯作者:
Hongjun Zhou,E-mail:zhouhongjun@cup.edu.cn;Chunming Xu,E-mail:xcm@cup.edu.cn
基金资助:
Ying Zhou1, Ruiying Li1, Zexuan Lv3, Jian Liu1,4, Hongjun Zhou2,3, Chunming Xu2
Received:
2021-09-22
Revised:
2022-02-05
Online:
2022-03-28
Published:
2022-04-28
Contact:
Hongjun Zhou,E-mail:zhouhongjun@cup.edu.cn;Chunming Xu,E-mail:xcm@cup.edu.cn
Supported by:
摘要: With increasing importance attached by the international community to global climate change and the pressing energy revolution, hydrogen energy, as a clean, efficient energy carrier, can serve as an important support for the establishment of a sustainable society. The United States and countries in Europe have already formulated relevant policies and plans for the use and development of hydrogen energy. While in China, aided by the “30·60” goal, the development of the hydrogen energy, production, transmission, and storage industries is steadily advancing. This article comprehensively considers the new energy revolution and the relevant plans of various countries, focuses on the principles, development status and research hot spots, and summarizes the different green hydrogen production technologies and paths. In addition, based on its assessment of current difficulties and bottlenecks in the production of green hydrogen and the overall global hydrogen energy development status, this article discusses the development of green hydrogen technologies.
Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu. Green hydrogen: A promising way to the carbon-free society[J]. 中国化学工程学报, 2022, 43(3): 2-13.
Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu. Green hydrogen: A promising way to the carbon-free society[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 2-13.
[1] H. Gao, Y. Yang, X. Zhao, L. Rao, Y. Liu, The hydrogen industry at home and abroad, Ustaninable Dev. 27 (2019) 9-17 [2] N. Zhang, M.M. Xue, X.Y. Wu, H.C. Dai, Y.Z. Zhang, L. Liu, D. Zhang, Comparison and Enlightenment of Energy Transition Between Domestic and International, Electr. Power. 54 (2) (2021) 113-119. (in Chinese) [3] H.C. Dai, Y.Z. Zhang, S.X. Li, N. Zhang, Study on the Connotation and Path of China's High-Quality Energy Development, Electr. Power. 52 (6) (2019) 27-36. (in Chinese) [4] D. Wang, Y.X. Zhou, J. Ding, W.J. Wang, The role of capital deepening in China's energy transition, Chin. J. Popul. Resour. Environ. 17 (3) (2019) 197-202 [5] J.N. Tian, J. Jiang, Y. Luo, X. Ma, Development Status and Trend of Green Hydrogen Energy Technology, Distrib. Energy. 6 (2) (2021) 8-13. (in Chinese) [6] G.Z. Liu, L.R. Dou, Y.Z. Huang, C.N. Zou, X. Xu, Analysis on hydrogen energy utilization bottlenecks and future prospect, Nat. Gas and Oil, 39 (3) (2021) 1-9. (in Chinese) [7] J. Oyekale, M. Petrollese, V. Tola, G. Cau, Impacts of renewable energy resources on effectiveness of grid-integrated systems:Succinct review of current challenges and potential solution strategies, Energies 13 (18) (2020) 4856 [8] S.R. Sinsel, R.L. Riemke, V.H. Hoffmann, Challenges and solution technologies for the integration of variable renewable energy sources-A review, Renew. Energy 145 (2020) 2271-2285 [9] X. You, Z. Bin, Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions, ChemElectroChem 6 (13) (2019) 3214-3226 [10] M. Schalenbach, A perspective on low-temperature water electrolysis-challenges in alkaline and acidic technology, Int. J. Electrochem. Sci. (2018) 1173-1226 [11] B. Guo, D. Luo, H.J. Zhou, Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts, Chem. Ind. Eng. Prog. 40 (6) (2021) 2933-2951. (in Chinese) [12] H.M. Yu, Z.G. Shao, M. Hou, B.L. Yi, F.W. Duan, Y.X. Yang, Hydrogen production by water electrolysis:Progress and suggestions, Chin. J. Eng. Sci. 23 (2) (2021) 146 [13] K. Zeng, D.K. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36 (3) (2010) 307-326 [14] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrog. Energy 38 (12) (2013) 4901-4934 [15] L. Barelli, G. Bidini, G. Cinti, Steam as sweep gas in SOE oxygen electrode, J. Energy Storage 20 (2018) 190-195 [16] X. Cheng, J.C. Wang, Y.C. Liao, C.P. Li, Z.D. Wei, Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal, ACS Appl. Mater. Interfaces 10 (28) (2018) 23774-23782 [17] P.Z. Chen, X.L. Hu, High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts, Adv. Energy Mater. 10 (39) (2020) 2002285 [18] J. Brauns, T. Turek, Alkaline water electrolysis powered by renewable energy:A review, Processes 8 (2) (2020) 248 [19] A. Nechache, S. Hody, Alternative and innovative solid oxide electrolysis cell materials:A short review, Renew. Sustain. Energy Rev. 149 (2021) 111322 [20] S.S. Jeon, J. Lim, P.W. Kang, J.W. Lee, G. Kang, H. Lee, Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers, ACS Appl. Mater. Interfaces 13 (31) (2021) 37179-37186 [21] G. Huang, M. Mandal, N.U. Hassan, K. Groenhout, A. Dobbs, W.E. Mustain, P.A. Kohl, Ionomer optimization for water uptake and swelling in anion exchange membrane electrolyzer:Hydrogen evolution electrode, J. Electrochem. Soc. 168 (2) (2021) 024503 [22] A.L. Santos, M.J. Cebola, D.M.F. Santos, Towards the hydrogen economy-A review of the parameters that influence the efficiency of alkaline water electrolyzers, Energies 14 (11) (2021) 3193 [23] J.E. Park, S.Y. Kang, S.H. Oh, J.K. Kim, M.S. Lim, C.Y. Ahn, Y.H. Cho, Y.E. Sung, High-performance anion-exchange membrane water electrolysis, Electrochimica Acta 295 (2019) 99-106 [24] G.Q. Yang, W.T. Wang, Z.Q. Xie, S.L. Yu, Y.F. Li, L. Ding, K. Li, F.Y. Zhang, Favorable morphology and electronic conductivity of functional sublayers for highly efficient water splitting electrodes, J. Energy Storage 36 (2021) 102342 [25] G.Q. Yang, S.L. Yu, Z.Y. Kang, Y. Dohrmann, G. Bender, B.S. Pivovar, J.B. Green Jr, S.T. Retterer, D.A. Cullen, F.Y. Zhang, A novel PEMEC with 3D printed non-conductive bipolar plate for low-cost hydrogen production from water electrolysis, Energy Convers. Manag. 182 (2019) 108-116 [26] S. Toghyani, E. Afshari, E. Baniasadi, S.A. Atyabi, Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer, Electrochimica Acta 267 (2018) 234-245 [27] P. Lettenmeier, R. Wang, R. Abouatallah, B. Saruhan, O. Freitag, P. Gazdzicki, T. Morawietz, R. Hiesgen, A.S. Gago, K.A. Friedrich, Low-cost and durable bipolar plates for proton exchange membrane electrolyzers, Sci. Rep. 7 (2017) 44035 [28] Y.H. Wang, L. Chen, X.M. Yu, Y.G. Wang, G.F. Zheng, Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets, Adv. Energy Mater. 7 (2) (2017) 1601390 [29] H.B. Liao, C. Wei, J.X. Wang, A. Fisher, T. Sritharan, Z.X. Feng, Z.J. Xu, A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media, Adv. Energy Mater. 7 (21) (2017) 1701129 [30] J.Y. Xu, T.F. Liu, J.J. Li, B. Li, Y.F. Liu, B.S. Zhang, D.H. Xiong, I. Amorim, W. Li, L.F. Liu, Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide, Energy Environ. Sci. 11 (7) (2018) 1819-1827 [31] L.H. Fu, Y.B. Li, N. Yao, F.L. Yang, G.Z. Cheng, W. Luo, IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis, ACS Catal. 10 (13) (2020) 7322-7327 [32] M. Felgenhauer, T. Hamacher, State-of-the-art of commercial electrolyzers and on-site hydrogen generation for logistic vehicles in South Carolina, Int. J. Hydrog. Energy 40 (5) (2015) 2084-2090 [33] S. Cao, L.Y. Piao, X.B. Chen, Emerging photocatalysts for hydrogen evolution, Trends Chem. 2 (1) (2020) 57-70 [34] Y.B. Li, Z.L. Jin, H. Liu, H.Y. Wang, Y.P. Zhang, G.R. Wang, Unique photocatalytic activities of transition metal phosphide for hydrogen evolution, J. Colloid Interface Sci. 541 (2019) 287-299 [35] S.M. Li, J. Tan, Z.J. Jiang, J. Wang, Z.Q. Li, MOF-derived bimetallic Fe-Ni-P nanotubes with tunable compositions for dye-sensitized photocatalytic H2 and O2 production, Chem. Eng. J. 384 (2020) 123354 [36] J. Liu, J.R. Feng, L.L. Lu, B.Y. Wu, P. Ren, W. Shi, P. Cheng, A metal-organic-framework-derived (Zn0.95Cu0.05)0.6Cd0.4S solid solution as efficient photocatalyst for hydrogen evolution reaction, ACS Appl. Mater. Interfaces 12 (9) (2020) 10261-10267 [37] Y. Yao, X.Y. Gao, Z.Z. Li, X.C. Meng, Photocatalytic reforming for hydrogen evolution:A review, Catalysts 10 (3) (2020) 335 [38] A.M. Elewa, M.H. Elsayed, A.F.M. EL-Mahdy, C.L. Chang, L.Y. Ting, W.C. Lin, C.Y. Lu, H.H. Chou, Triptycene-based discontinuously-conjugated covalent organic polymer photocatalysts for visible-light-driven hydrogen evolution from water, Appl. Catal. B Environ. 285 (2021) 119802 [39] Y.L. Li, C.L. Gao, W.S. Jiang, C.Q. Zhuang, W.Y. Tan, W.M. Li, Y.L. Li, L.H. Wang, X.Z. Liao, Z.C. Sun, J. Zou, X.D. Han, A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution, Appl. Catal. B Environ. 286 (2021) 119923 [40] M.J. Yu, W.W. Zhang, Z.Q. Guo, Y.Z. Wu, W.H. Zhu, Engineering nanoparticulate organic photocatalysts via a scalable flash nanoprecipitation process for efficient hydrogen production, Angew. Chem. Int. Ed. 60 (28) (2021) 15590-15597 [41] G.J. Lee, H.C. Chen, J.J. Wu, (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production, Int. J. Hydrog. Energy 44 (1) (2019) 110-117 [42] Y.R. Song, X. Xin, S.H. Guo, Y.Z. Zhang, L. Yang, B.L. Wang, X.H. Li, One-step MOFs-assisted synthesis of intimate contact MoP-Cu3P hybrids for photocatalytic water splitting, Chem. Eng. J. 384 (2020) 123337 [43] W.W. Zhan, Y.S. Yuan, L.M. Sun, Y.Y. Yuan, X.G. Han, Y.L. Zhao, Hierarchical NiO@N-doped carbon microspheres with ultrathin nanosheet subunits as excellent photocatalysts for hydrogen evolution, Small 15 (22) (2019) e1901024 [44] A.A. Basheer, I. Ali, Water photo splitting for green hydrogen energy by green nanoparticles, Int. J. Hydrog. Energy 44 (23) (2019) 11564-11573 [45] I. Ali, G.T. Imanova, A.A. Garibov, T.N. Agayev, S.H. Jabarov, A.S. Almalki, A. Alsubaie, Gamma rays mediated water splitting on nano-ZrO2 surface:Kinetics of molecular hydrogen formation, Radiat. Phys. Chem. 183 (2021) 109431 [46] I. Ali, G.T. Imanova, X.Y. Mbianda, O.M.L. Alharbi, Role of the radiations in water splitting for hydrogen generation, Sustain. Energy Technol. Assess. 51 (2022) 101926 [47] M.K. Sarma, N. Ramkumar, S. Subudhi, Biohydrogen production from aquatic plant and algae biomass by enterobacter cloacae strain DT-1, Chem. Eng. Technol. (2021) ceat.202000547 [48] A. Fasolini, D. Cespi, T. Tabanelli, R. Cucciniello, F. Cavani, Hydrogen from renewables:A case study of glycerol reforming, Catalysts 9 (9) (2019) 722 [49] K.A. Davis, S. Yoo, E.W. Shuler, B.D. Sherman, S. Lee, G. Leem, Photocatalytic hydrogen evolution from biomass conversion, Nano Converg. 8 (1) (2021) 6 [50] G.J. Yue, H.L. Lin, Y.T. Peng, J. Min, M. Wang, Q. Xiong, Future green hydrogen energy from biomass, Chem. Ind. Eng. Prog. 40 (8) (2021) 4678-4684. (in Chinese) [51] A. Capa, R. García, D. Chen, F. Rubiera, C. Pevida, M.V. Gil, On the effect of biogas composition on the H2 production by sorption enhanced steam reforming (SESR), Renew. Energy 160 (2020) 575-583 [52] K. Zhang, W.J. Kim, A.H.A. Park, Alkaline thermal treatment of seaweed for high-purity hydrogen production with carbon capture and storage potential, Nat. Commun. 11 (2020) 3783 [53] J.J. Hu, D. Li, D.J. Lee, Q.G. Zhang, W. Wang, S.H. Zhao, Z.P. Zhang, C. He, Integrated gasification and catalytic reforming syngas production from corn straw with mitigated greenhouse gas emission potential, Bioresour. Technol. 280 (2019) 371-377 [54] M.V. Gil, K.R. Rout, de Chen, Production of high pressure pure H2 by pressure swing sorption enhanced steam reforming (PS-SESR) of byproducts in biorefinery, Appl. Energy 222 (2018) 595-607 [55] N. de Nooijer, F. Gallucci, E. Pellizzari, J. Melendez, D.A. Pacheco Tanaka, G. Manzolini, M. van Sint Annaland, On concentration polarisation in a fluidized bed membrane reactor for biogas steam reforming:Modelling and experimental validation, Chem. Eng. J. 348 (2018) 232-243 [56] L.Z. Li, K.S. Yan, J. Chen, T. Feng, F.M. Wang, J.W. Wang, Z.L. Song, C.Y. Ma, Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide, Sci. Total Environ. 657 (2019) 1357-1367 [57] N. Schiaroli, C. Lucarelli, G.S. de Luna, G. Fornasari, A. Vaccari, Ni-based catalysts to produce synthesis gas by combined reforming of clean biogas, Appl. Catal. A Gen. 582 (2019) 117087 [58] R. Khonde, J. Nanda, A. Chaurasia, Experimental investigation of catalytic cracking of rice husk tar for hydrogen production, J. Mater. Cycles Waste Manag. 20 (2) (2018) 1310-1319 [59] P. Daorattanachai, W. Laosiripojana, A. Laobuthee, N. Laosiripojana, Type of contribution:Research article catalytic activity of sewage sludge char supported re-Ni bimetallic catalyst toward cracking/reforming of biomass tar, Renew. Energy 121 (2018) 644-651 [60] L.C. Cao, I.K.M. Yu, X.N. Xiong, D.C.W. Tsang, S.C. Zhang, J.H. Clark, C.W. Hu, Y.H. Ng, J. Shang, Y.S. Ok, Biorenewable hydrogen production through biomass gasification:A review and future prospects, Environ. Res. 186 (2020) 109547 [61] C.W. Huang, B.S. Nguyen, J.C.S. Wu, V.H. Nguyen, A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water, Int. J. Hydrog. Energy 45 (36) (2020) 18144-18159 [62] Q. Liu, L.L. Wei, Q.Y. Xi, Y.Q. Lei, F.X. Wang, Edge functionalization of terminal amino group in carbon nitride by in situ C-N coupling for photoreforming of biomass into H2, Chem. Eng. J. 383 (2020) 123792 [63] M.G. Granados-Fitch, J.M. Quintana-Melgoza, E.A. Juarez-Arellano, M. Avalos-Borja, Mechanism to H2 production on rhenium carbide from pyrolysis of coconut shell, Int. J. Hydrog. Energy 44 (5) (2019) 2784-2796 [64] T.T. Giang, S. Lunprom, Q. Liao, A. Reungsang, A. Salakkam, Improvement of hydrogen production from Chlorella sp. biomass by acid-thermal pretreatment, PeerJ 7 (2019) e6637 [65] Y.N. Yin, J. Hu, J.L. Wang, Fermentative hydrogen production from macroalgae Laminaria japonica pretreated by microwave irradiation, Int. J. Hydrog. Energy 44 (21) (2019) 10398-10406 [66] P. Casademont, J. Sánchez-Oneto, A.P.J. Scandelai, L. Cardozo-Filho, J.R. Portela, Hydrogen production by supercritical water gasification of black liquor:Use of high temperatures and short residence times in a continuous reactor, J. Supercrit. Fluids 159 (2020) 104772 [67] M.B. García-Jarana, J.R. Portela, J. Sánchez-Oneto, E.J. Martinez de la Ossa, B. Al-Duri, Analysis of the supercritical water gasification of cellulose in a continuous system using short residence times, Appl. Sci. 10 (15) (2020) 5185 [68] A. AlNouss, G. McKay, T. Al-Ansari, Enhancing waste to hydrogen production through biomass feedstock blending:A techno-economic-environmental evaluation, Appl. Energy 266 (2020) 114885 [69] A. Mostafaeipour, S.J.H. Dehshiri, S.S.H. Dehshiri, M. Jahangiri, Prioritization of potential locations for harnessing wind energy to produce hydrogen in Afghanistan, Int. J. Hydrog. Energy 45 (58) (2020) 33169-33184 [70] C. Mikovits, E. Wetterlund, S. Wehrle, J. Baumgartner, J. Schmidt, Stronger together:Multi-annual variability of hydrogen production supported by wind power in Sweden, Appl. Energy 282 (2021) 116082 [71] F. C. Wang, Y. Hsiao, Y. Z. Yang, The optimization of hybrid power systems with renewable energy and hydrogen generation, Energies. 11 (2018) 1948 [72] H. Sun, Z. Li, A. Chen, Y. Zhang, C. Mei, Current status and development trend of hydrogen production technology by wind power, Trans. China Electrotech. Soc. 34 (2019) 4071-4083 [73] L. Zhang, S.Y. Chen, Development and suggestions for the hydrogen production technologies by the wind power at home and abroad, Sci. Technol. China. 1 (2020) 13-16 [74] D. Apostolou, P. Enevoldsen, The past, present and potential of hydrogen as a multifunctional storage application for wind power, Renew. Sustain. Energy Rev. 112 (2019) 917-929 [75] Z. Li, P. Guo, R.H. Han, H.X. Sun, Current status and development trend of wind power generation-based hydrogen production technology, Energy Explor. Exploitation 37 (1) (2019) 5-25 [76] R. Takahashi, H. Kinoshita, T. Murata, J. Tamura, M. Sugimasa, A. Komura, M. Futami, M. Ichinose, K. Ide, Output power smoothing and hydrogen production by using variable speed wind generators, IEEE Trans. Ind. Electron. 57 (2) (2010) 485-493 [77] F.J. Pino, L. Valverde, F. Rosa, Influence of wind turbine power curve and electrolyzer operating temperature on hydrogen production in wind-hydrogen systems, J. Power Sources 196 (9) (2011) 4418-4426 [78] R. Valdés, J.H. Lucio, L.R. Rodríguez, Operational simulation of wind power plants for electrolytic hydrogen production connected to a distributed electricity generation grid, Renew. Energy 53 (2013) 249-257 [79] R. Sarrias-Mena, L.M. Fernández-Ramírez, C.A. García-Vázquez, F. Jurado, Electrolyzer models for hydrogen production from wind energy systems, Int. J. Hydrog. Energy 40 (7) (2015) 2927-2938 [80] D. Guilbert, G. Vitale, Improved hydrogen-production-based power management control of a wind turbine conversion system coupled with multistack proton exchange membrane electrolyzers, Energies 13 (5) (2020) 1239 [81] O. Nematollahi, P. Alamdari, M. Jahangiri, A. Sedaghat, A.A. Alemrajabi, A techno-economical assessment of solar/wind resources and hydrogen production:A case study with GIS maps, Energy 175 (2019) 914-930 [82] Y.S. Huang, S.J. Liu, Chinese green hydrogen production potential development:A provincial case study, IEEE Access 8 (2020) 171968-171976 [83] J. Kim, E. Muljadi, R.M. Nelms, Modelling and control coordination scheme of a wind-to-hydrogen set for future renewable-based power systems, IET Renew. Power Gener. 14 (17) (2020) 3317-3326 [84] B. Kılkış, B.K. Taşeli, Two-step onboard hydrogen generation from Black Sea H2 S reserves, Int. J. Energy Res. 45 (5) (2021) 7177-7192 [85] W.L. Yin, L. Liu, C.S. Zhang, X.M. Rui, Y.Y. Hu, Modeling and operation performance analysis of hybrid drive wind power generation system with hydrogen energy storage, Electr. Power Autom. Equip. 40 (10) (2020) 64-70. (in Chinese) [86] N. Ning, Research on hydrogen generation system by water electrolysis under wide power fluctuation, Ship Sci. Technol. 39 (6) (2017) 133-136. (in Chinese) [87] M.J. Guo, Z. Yan, Y. Zhou, P.C. Zhang, Optimized Operation Design of Integrated Energy System with Wind Power Hydrogen Production, Electr. Power. 53 (1) (2020) 115-123. (in Chinese) [88] H. Li, X.L. Yao, M.A. Tachega, D. Ahmed, Path selection for wind power in China:Hydrogen production or underground pumped hydro energy storage? J. Renew. Sustain. Energy 13 (3) (2021) 035901 [89] C. Schnuelle, T. Wassermann, D. Fuhrlaender, E. Zondervan, Dynamic hydrogen production from PV & wind direct electricity supply-Modeling and techno-economic assessment, Int. J. Hydrog. Energy 45 (55) (2020) 29938-29952 [90] W.C. Nadaleti, G.B. dos Santos, V.A. Lourenço, Integration of renewable energies using the surplus capacity of wind farms to generate H2 and electricity in Brazil and in the Rio Grande do Sul state:Energy planning and avoided emissions within a circular economy, Int. J. Hydrog. Energy 45 (46) (2020) 24190-24202 [91] A. Khouya, Levelized costs of energy and hydrogen of wind farms and concentrated photovoltaic thermal systems. A case study in Morocco, Int. J. Hydrog. Energy 45 (56) (2020) 31632-31650 [92] T.R. Ayodele, J.L. Munda, Potential and economic viability of green hydrogen production by water electrolysis using wind energy resources in South Africa, Int. J. Hydrog. Energy 44 (33) (2019) 17669-17687 [93] K. Almutairi, S.S. Hosseini Dehshiri, S.J. Hosseini Dehshiri, A. Mostafaeipour, M. Jahangiri, K. Techato, Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy:A case study, Energy Strategy Rev. 36 (2021) 100684 [94] M. Rezaei, N. Naghdi-Khozani, N. Jafari, Wind energy utilization for hydrogen production in an underdeveloped country:An economic investigation, Renew. Energy 147 (2020) 1044-1057 [95] F. Grüger, O. Hoch, J. Hartmann, M. Robinius, D. Stolten, Optimized electrolyzer operation:Employing forecasts of wind energy availability, hydrogen demand, and electricity prices, Int. J. Hydrog. Energy 44 (9) (2019) 4387-4397 [96] S. Song, H. Lin, P. Sherman, X. Yang, C.P. Nielsen, X. Chen, M.B. McElroy, Production of hydrogen from offshore wind in China and cost-competitive supply to Japan, Nat. Commun. 12 (2021) 6953 [97] M. Woznicki, G. le Solliec, R. Loisel, Far off-shore wind energy-based hydrogen production:Technological assessment and market valuation designs, J. Phys. Conf. Ser. 1669 (1) (2020) 012004 [98] M. Akbari Vakilabadi, A. Afzalabadi, A. Khoeini Poorfar, A. Rahbari, M. Bidi, M.H. Ahmadi, T.Z. Ming, Technical and economical evaluation of grid-connected renewable power generation system for a residential urban area, Int J Low-Carbon Tech 14 (1) (2018) 10-22 [99] C.Q. Guo, L.Q. Yi, C.F. Yan, Y. Shi, Z.D. Wang, Optimization of Photovoltaic-PEM Electrolyzer Direct Coupling Systems, Adv. New Renew. Energy. 7 (3) (2019) 287-294. (in Chinese) [100] M. Fereidooni, A. Mostafaeipour, V. Kalantar, H. Goudarzi, A comprehensive evaluation of hydrogen production from photovoltaic power station, Renew. Sustain. Energy Rev. 82 (2018) 415-423 [101] H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Photocatalytic solar hydrogen production from water on a 100-m2 scale, Nature 598 (7880) (2021) 304-307 [102] S.Q. Chai, G.J. Zhang, G.Q. Li, Y.F. Zhang, Industrial hydrogen production technology and development status in China:A review, Clean Technol. Environ. Policy 23 (7) (2021) 1931-1946 [103] Y. Wang, S. Zhou, H. Huo, Cost and CO2 reductions of solar photovoltaic power generation in China:Perspectives for 2020, Renew. Sustain. Energy Rev. 39 (2014) 370-380 [104] R. Varunaa, S. Kiruthika, P. Ravindran, Ti4+ substituted magnesium hydride as promising material for hydrogen storage and photovoltaic applications. In:AIP Conf. Proc. 2019. [105] X.L. Yi, L.Z. Song, S.X. Ouyang, N. Wang, H.Y. Chen, J.B. Wang, J. Lv, J.H. Ye, Cost-efficient photovoltaic-water electrolysis over ultrathin nanosheets of cobalt/iron-molybdenum oxides for potential large-scale hydrogen production, Small 17 (39) (2021) 2102222 [106] X. Xiao, S.S. Liu, D.K. Huang, X.W. Lv, M. Li, X.X. Jiang, L.M. Tao, Z.H. Yu, Y. Shao, M.K. Wang, Y. Shen, Highly efficient hydrogen production using a reformed electrolysis system driven by a single perovskite solar cell, ChemSusChem 12 (2) (2019) 434-440 [107] A. Gougui, A. Djafour, M.B. Danoune, N. Khelfaoui, Field experience study and evaluation for hydrogen production through a photovoltaic system in Ouargla region, Algeria, Int. J. Hydrog. Energy 45 (4) (2020) 2593-2606 [108] C. Marino, A. Nucara, M.F. Panzera, M. Pietrafesa, V. Varano, Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage, Renew. Energy 142 (2019) 316-329 [109] J.A. Azzolini, M. Tao, K. Ayers, J. Vacek, A load-managing photovoltaic system for driving hydrogen production, 2020 47th IEEE Photovolt, Specialists Conf. PVSC (2020) 1927-1932 [110] D.T. Cotfas, A.M. Deaconu, P.A. Cotfas, Application of successive discretization algorithm for determining photovoltaic cells parameters, Energy Convers. Manag. 196 (2019) 545-556 [111] A. Kovač, D. Marciuš, L. Budin, Solar hydrogen production via alkaline water electrolysis, Int. J. Hydrog. Energy 44 (20) (2019) 9841-9848 [112] B. Kurşun, K. Ökten, Thermodynamic analysis of a Rankine cycle coupled with a concentrated photovoltaic thermal system for hydrogen production by a proton exchange membrane electrolyzer plant, Int. J. Hydrog. Energy 44 (41) (2019) 22863-22875 [113] M.D. Cabezas, J.I. Franco, H.J. Fasoli, Optimization of self-regulated hydrogen production from photovoltaic energy, Int. J. Hydrog. Energy 45 (17) (2020) 10391-10397 [114] M. Reuß, J. Reul, T. Grube, M. Langemann, S. Calnan, M. Robinius, R. Schlatmann, U. Rau, D. Stolten, Solar hydrogen production:A bottom-up analysis of different photovoltaic-electrolysis pathways, Sustain. Energy Fuels 3 (3) (2019) 801-813 [115] S. Senthilraja, R. Gangadevi, H. Köten, R. Marimuthu, Performance assessment of a solar powered hydrogen production system and its ANFIS model, Heliyon 6 (10) (2020) e05271 [116] A. Fopah-Lele, A. Kabore-Kere, J.G. Tamba, I. Yaya-Nadjo, Solar electricity storage through green hydrogen production:A case study, Int. J. Energy Res. 45 (9) (2021) 13007-13021 [117] S. Touili, A. Alami Merrouni, Y. El Hassouani, A.I. Amrani, S. Rachidi, Analysis of the yield and production cost of large-scale electrolytic hydrogen from different solar technologies and under several Moroccan climate zones, Int. J. Hydrog. Energy 45 (51) (2020) 26785-26799 [118] H. Tebibel, Techno-economic optimization of grid-tied hydrogen-renewable-based power plant with management strategy, In:2018 6th International Renewable and Sustainable Energy Conference (IRSEC). Rabat, Morocco. IEEE, (2018) 1-6 |
[1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[2] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant[J]. 中国化学工程学报, 2023, 60(8): 228-234. |
[3] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage[J]. 中国化学工程学报, 2023, 59(7): 169-175. |
[4] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid[J]. 中国化学工程学报, 2023, 59(7): 210-221. |
[5] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[6] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone[J]. 中国化学工程学报, 2023, 57(5): 79-87. |
[7] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents[J]. 中国化学工程学报, 2023, 57(5): 109-117. |
[8] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites[J]. 中国化学工程学报, 2023, 57(5): 141-150. |
[9] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32. |
[10] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents[J]. 中国化学工程学报, 2023, 56(4): 233-241. |
[11] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations[J]. 中国化学工程学报, 2023, 55(3): 49-58. |
[12] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation[J]. 中国化学工程学报, 2023, 55(3): 222-229. |
[13] | Yuandong Cui, Bin He, Yu Lei, Yu Liang, Wanting Zhao, Jian Sun, Xiaomin Liu. Lignin derived absorbent for efficient and sustainable CO2 capture[J]. 中国化学工程学报, 2023, 54(2): 89-97. |
[14] | Suhang Jiang, Lijuan Tan, Yujia Tong, Lijian Shi, Weixing Li. A heterogeneous double chamber electro-Fenton with high production of H2O2 using La–CeO2 modified graphite felt as cathode[J]. 中国化学工程学报, 2023, 54(2): 98-105. |
[15] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations[J]. 中国化学工程学报, 2023, 54(2): 206-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||