[1] J.J. Wu, T. Sharifi, Y. Gao, T. Zhang, P.M. Ajayan, Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals, Adv Mater 31 (13) (2019) e1804257. 10.1002/adma.201804257 [2] P. Prabhu, V. Jose, J.M. Lee, Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction, Adv. Funct. Mater. 30 (24) (2020) 1910768 [3] X.C. Duan, J.T. Xu, Z.X. Wei, J.M. Ma, S.J. Guo, S.Y. Wang, H.K. Liu, S.X. Dou, Metal-free carbon materials for CO2 electrochemical reduction, Adv. Mater. 29 (41) (2017) 1701784 [4] D. Esrafilzadeh, A. Zavabeti, R. Jalili, P. Atkin, J. Choi, B.J. Carey, R. Brkljača, A.P. O'Mullane, M.D. Dickey, D.L. Officer, D.R. MacFarlane, T. Daeneke, K. Kalantar-Zadeh, Publisher Correction:Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces, Nat Commun 10 (1) (2019) 1367 [5] A.S. Varela, W. Ju, P. Strasser, Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction, Adv. Energy Mater. 8 (30) (2018) 1802905 [6] J. Gu, C.S. Hsu, L.C. Bai, H.M. Chen, X.L. Hu, Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO, Science 364 (6445) (2019) 1091-1094 [7] D.X. Yang, Q.G. Zhu, C.J. Chen, H.Z. Liu, Z.M. Liu, Z.J. Zhao, X.Y. Zhang, S.J. Liu, B.X. Han, Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts, Nat Commun 10 (1) (2019) 677 [8] M. Liu, Y.J. Pang, B. Zhang, P. de Luna, O. Voznyy, J.X. Xu, X.L. Zheng, C.T. Dinh, F.J. Fan, C.H. Cao, F.P. de Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S.O. Kelley, E.H. Sargent, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature 537 (7620) (2016) 382-386 [9] S.Q. Zhu, X.P. Qin, Q. Wang, T.H. Li, R. Tao, M. Gu, M.H. Shao, Composition-dependent CO2 electrochemical reduction activity and selectivity on Au-Pd core-shell nanoparticles, J. Mater. Chem. A 7 (28) (2019) 16954-16961 [10] S.C. Abeyweera, J. Yu, J.P. Perdew, Q.M. Yan, Y.G. Sun, Hierarchically 3D porous Ag nanostructures derived from silver benzenethiolate nanoboxes:Enabling CO2 reduction with a near-unity selectivity and mass-specific current density over 500 A/G, Nano Lett 20 (4) (2020) 2806-2811 [11] X.B. Zhu, J.H. Liu, X.S. Li, J.L. Liu, X. Qu, A.M. Zhu, Enhanced effect of plasma on catalytic reduction of CO2 to CO with hydrogen over Au/CeO2 at low temperature, J. Energy Chem. 26 (3) (2017) 488-493 [12] T.F. Liu, S. Ali, Z. Lian, B. Li, D.S. Su, CO2electoreduction reaction on heteroatom-doped carbon cathode materials, J. Mater. Chem. A 5 (41) (2017) 21596-21603 [13] Xie J, Zhao X, Wu M, Li Q, Wang Y, Yao J, Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution, Angew Chem Int Ed Engl 57 (31) (2018) 9640-9644 [14] S.Y. Mou, T.W. Wu, J.F. Xie, Y. Zhang, L. Ji, H. Huang, T. Wang, Y.L. Luo, X.L. Xiong, B. Tang, X.P. Sun, Boron phosphide nanoparticles:A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3 OH, Adv Mater 31 (36) (2019) e1903499. 10.1002/adma.201903499 [15] Schlager S, Dumitru LM, Haberbauer M, Fuchsbauer A, Neugebauer H, Hiemetsberger D, Wagner A, Portenkirchner E, Sariciftci NS, Electrochemical reduction of carbon dioxide to methanol by direct injection of electrons into immobilized enzymes on a modified electrode, ChemSusChem 9 (6) (2016) 631-635 [16] T. Benedetti, S. Naficy, A. Walker, D.L. Officer, G.G. Wallace, F. Dehghani, Solid-state poly(ionic liquid) gels for simultaneous CO2 adsorption and electrochemical reduction, Energy Technol. 6 (4) (2018) 702-709 [17] T.F. Liu, S. Ali, Z. Lian, C.W. Si, D.S. Su, B. Li, Phosphorus-doped onion-like carbon for CO2 electrochemical reduction:The decisive role of the bonding configuration of phosphorus, J. Mater. Chem. A 6 (41) (2018) 19998-20004 [18] Y.F. Song, W. Chen, C.C. Zhao, S.G. Li, W. Wei, Y.H. Sun, Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol, Angew Chem Int Ed Engl 56 (36) (2017) 10840-10844 [19] N. Sreekanth, M.A. Nazrulla, T.V. Vineesh, K. Sailaja, K.L. Phani, Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate, Chem Commun (Camb) 51 (89) (2015) 16061-16064 [20] S. Liu, H.B. Yang, X. Su, J. Ding, Q. Mao, Y.Q. Huang, T. Zhang, B. Liu, Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction:A review, J. Energy Chem. 36 (2019) 95-105 [21] M. Kuang, A.X. Guan, Z.X. Gu, P. Han, L.P. Qian, G.F. Zheng, Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion, Nano Res. 12 (9) (2019) 2324-2329 [22] Y. Zhu, K. Lv, X.P. Wang, H.Q. Yang, G.Z. Xiao, Y. Zhu, 1D/2D nitrogen-doped carbon nanorod arrays/ultrathin carbon nanosheets:Outstanding catalysts for the highly efficient electroreduction of CO2 to CO, J. Mater. Chem. A 7 (24) (2019) 14895-14903 [23] L. Ye, Y.R. Ying, D.R. Sun, Z.Y. Zhang, L.F. Fei, Z.H. Wen, J.L. Qiao, H.T. Huang, Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction, Angew Chem Int Ed Engl 59 (8) (2020) 3244-3251 [24] K. Miura, J. Hayashi, K. Hashimoto, Production of molecular sieving carbon through carbonization of coal modified by organic additives, Carbon 29 (4-5) (1991) 653-660 [25] Z.X. Ma, T. Kyotani, Z. Liu, O. Terasaki, A. Tomita, Very high surface area microporous carbon with a three-dimensional nano-array structure:Synthesis and its molecular structure, Chem. Mater. 13 (12) (2001) 4413-4415 [26] M.J. Chen, S. Wang, H.Y. Zhang, P. Zhang, Z.Q. Tian, M. Lu, X.J. Xie, L. Huang, W. Huang, Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2, Nano Res. 13 (3) (2020) 729-735 [27] X. Xu, Y. Li, Y.T. Gong, P.F. Zhang, H.R. Li, Y. Wang, Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade, J Am Chem Soc 134 (41) (2012) 16987-16990 [28] F.J. Cui, Q.F. Deng, H.P. Zhao, Y. Jiang, J.L. Li, Ionic liquid promoted synthesis of nitrogen, phosphorus, and fluorine triple-doped mesoporous carbon as metal-free electrocatalyst for oxygen reduction reaction, Ionics 26 (9) (2020) 4609-4619 [29] J. Wang, X.G. Duan, J. Gao, Y. Shen, X.H. Feng, Z.J. Yu, X.Y. Tan, S.M. Liu, S.B. Wang, Roles of structure defect, oxygen groups and heteroatom doping on carbon in nonradical oxidation of water contaminants, Water Res 185 (2020) 116244 [30] Z.C. Xiao, D.B. Kong, J.X. Liang, B. Wang, R. Iqbal, Q.H. Yang, L.J. Zhi, Structure controllable carbon matrix derived from benzene-constructed porous organic polymers for high-performance Li-S batteries, Carbon 116 (2017) 633-639 [31] W.Y. Zhang, S. Wei, Y.N. Wu, Y.L. Wang, M. Zhang, D. Roy, H. Wang, J.Y. Yuan, Q. Zhao, Poly(ionic liquid)-derived graphitic nanoporous carbon membrane enables superior supercapacitive energy storage, ACS Nano 13 (9) (2019) 10261-10271 [32] J. Gong, H.J. Lin, M. Antonietti, J.Y. Yuan, Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s:Hierarchical pore structures for efficient CO2capture and dye removal, J. Mater. Chem. A 4 (19) (2016) 7313-7321 [33] W. Alkarmo, F. Ouhib, A. Aqil, J.M. Thomassin, J.Y. Yuan, J. Gong, B. Vertruyen, C. Detrembleur, C. Jérôme, Poly(ionic liquid)-derived N-doped carbons with hierarchical porosity for lithium- and sodium-ion batteries, Macromol Rapid Commun 40 (1) (2019) e1800545. 10.1002/marc.201800545 [34] H. Wang, J. Jia, P.F. Song, Q. Wang, D.B. Li, S.X. Min, C.X. Qian, L. Wang, Y.F. Li, C. Ma, T. Wu, J.Y. Yuan, M. Antonietti, G.A. Ozin, Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes:A step towards the electrochemical CO2 refinery, Angew Chem Int Ed Engl 56 (27) (2017) 7847-7852 [35] J. Gao, C.C. He, J.G. Liu, P.J. Ren, H.B. Lu, J.Y. Feng, Z.G. Zou, Z. Yin, X.D. Wen, X.Y. Tan, Polymerizable ionic liquid as a precursor for N, P co-doped carbon toward the oxygen reduction reaction, Catal. Sci. Technol. 8 (4) (2018) 1142-1150 [36] C.J. Gao, G.J. Chen, X.C. Wang, J. Li, Y. Zhou, J. Wang, A hierarchical meso-macroporous poly(ionic liquid) monolith derived from a single soft template, Chem Commun (Camb) 51 (24) (2015) 4969-4972 [37] F.W. Li, M.Q. Xue, G.P. Knowles, L. Chen, D.R. MacFarlane, J. Zhang, Porous nitrogen-doped carbon derived from biomass for electrocatalytic reduction of CO2 to CO, Electrochimica Acta 245 (2017) 561-568 [38] A.V. Korobeinyk, R.L.D. Whitby, S.V. Mikhalovsky, High temperature oxidative resistance of polyacrylonitrile-methylmethacrylate copolymer powder converting to a carbonized monolith, Eur. Polym. J. 48 (1) (2012) 97-104 [39] C.J. Chen, X.F. Sun, X.P. Yan, Y.H. Wu, H.Z. Liu, Q.G. Zhu, B.B.A. Bediako, B.X. Han, Boosting CO2 electroreduction on N, P-Co-doped carbon aerogels, Angew Chem Int Ed Engl 59 (27) (2020) 11123-11129 [40] C. Li, Y.W. Wang, N. Xiao, H.Q. Li, Y.Q. Ji, Z. Guo, C. Liu, J.S. Qiu, Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction, Carbon 151 (2019) 46-52 [41] W.Q. Liu, J.W. Qi, P.Y. Bai, W.D. Zhang, L. Xu, Utilizing spatial confinement effect of N atoms in micropores of coal-based metal-free material for efficiently electrochemical reduction of carbon dioxide, Appl. Catal. B:Environ. 272 (2020) 118974 [42] F.P. Pan, B.Y. Li, W. Deng, Z.C. Du, Y. Gang, G.F. Wang, Y. Li, Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition, Appl. Catal. B:Environ. 252 (2019) 240-249 [43] H. Pan, Z.B. Cheng, Z.B. Xiao, X.J. Li, R.H. Wang, Lithium-sulfur batteries:The fusion of imidazolium-based ionic polymer and carbon nanotubes:One type of new heteroatom-doped carbon precursors for high-performance lithium-sulfur batteries, Adv. Funct. Mater. 27 (44) (2017) 1703936 [44] L. Miao, H. Duan, M.X. Liu, W.J. Lu, D.Z. Zhu, T. Chen, L.C. Li, L.H. Gan, Poly(ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors, Chem. Eng. J. 317 (2017) 651-659 [45] Li W, Bandosz TJ, Role of heteroatoms in S, N-codoped nanoporous carbon materials in CO2 (photo)electrochemical reduction, ChemSusChem 11 (17) (2018) 2987-2999 [46] J.Y. Zhu, D. Xu, W.J. Qian, J.Y. Zhang, F. Yan, Heteroatom-containing porous carbons derived from ionic liquid-doped alkali organic salts for supercapacitors, Small 12 (14) (2016) 1935-1944 [47] P.P. Su, K. Iwase, S. Nakanishi, K. Hashimoto, K. Kamiya, Nickel-nitrogen-modified graphene:An efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide, Small 12 (44) (2016) 6083-6089 [48] F. Pan, B. Li, X. Xiang, G. Wang, Y. Li, Efficient CO2 electroreduction by highly dense and active pyridinic nitrogen on holey carbon layers with fluorine engineering, ACS Catal., 9 (2019) 2124-2133 [49] R. Arrigo, M. Hävecker, R. Schlögl, D.S. Su, Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes, Chem Commun (Camb) (40) (2008) 4891-4893 [50] M. Borghei, P. Kanninen, M. Lundahl, T. Susi, J. Sainio, I. Anoshkin, A. Nasibulin, T. Kallio, K. Tammeveski, E. Kauppinen, V. Ruiz, High oxygen reduction activity of few-walled carbon nanotubes with low nitrogen content, Appl. Catal. B:Environ. 158-159 (2014) 233-241 [51] P.P. Sharma, J.J. Wu, R.M. Yadav, M.J. Liu, C.J. Wright, C.S. Tiwary, B.I. Yakobson, J. Lou, P.M. Ajayan, X.D. Zhou, Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2:On the understanding of defects, defect density, and selectivity, Angew. Chem. 127 (46) (2015) 13905-13909 [52] Z.Y. Shu, G.Y. Ye, J. Wang, S.Q. Liu, Z. He, W.W. Zhu, B. Liu, M. Liu, Nitrogen-doped carbon with high graphitic-N exposure for electroreduction of CO2 to CO, Ionics 27 (7) (2021) 3089-3098 [53] J.Y. Xu, Y.H. Kan, R. Huang, B.S. Zhang, B.L. Wang, K.H. Wu, Y.M. Lin, X.Y. Sun, Q.F. Li, G. Centi, D.S. Su, Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide, ChemSusChem 9 (10) (2016) 1085-1089 [54] X.M. Ning, Y.H. Li, J.Y. Ming, Q. Wang, H.J. Wang, Y.H. Cao, F. Peng, Y.H. Yang, H. Yu, Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction, Chem Sci 10 (6) (2019) 1589-1596 [55] G.L. Chai, Z.X. Guo, Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction, Chem Sci 7 (2) (2016) 1268-1275 [56] H.P. Yang, Y. Wu, Q. Lin, L.D. Fan, X.Y. Chai, Q.L. Zhang, J.H. Liu, C.X. He, Z.Q. Lin, Composition tailoring via N and S Co-doping and structure tuning by constructing hierarchical pores:Metal-free catalysts for high-performance electrochemical reduction of CO2, Angew Chem Int Ed Engl 57 (47) (2018) 15476-15480 [57] H. Wang, H. Wang, G.S. Liu, Q. Yan, In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture:Role of the intrinsic N, Sci Total Environ 771 (2021) 145424 [58] J. Song, W.Z. Shen, J.G. Wang, W.B. Fan, Superior carbon-based CO2 adsorbents prepared from poplar anthers, Carbon 69 (2014) 255-263 [59] P.F. Yao, T. Li, Y.L. Qiu, Q. Zheng, H.M. Zhang, J.W. Yan, X.F. Li, N-doped hierarchical porous carbon derived from bismuth salts decorated ZIF8 as a highly efficient electrocatalyst for CO2 reduction, J. Mater. Chem. A 9 (1) (2021) 320-326 |