中国化学工程学报 ›› 2022, Vol. 44 ›› Issue (4): 51-71.DOI: 10.1016/j.cjche.2021.03.045
He Yang1,2,5, Aqiang Chen1,2,3, Shujun Geng1,2,3, Jingcai Cheng2,4,5, Fei Gao6, Qingshan Huang1,2,3,4,5, Chao Yang1,2,3,4,5
收稿日期:
2020-10-24
修回日期:
2021-03-05
出版日期:
2022-04-28
发布日期:
2022-06-18
通讯作者:
Qingshan Huang,E-mail:huangqs@qibebt.ac.cn;Chao Yang,E-mail:chaoyang@ipe.ac.cn
基金资助:
He Yang1,2,5, Aqiang Chen1,2,3, Shujun Geng1,2,3, Jingcai Cheng2,4,5, Fei Gao6, Qingshan Huang1,2,3,4,5, Chao Yang1,2,3,4,5
Received:
2020-10-24
Revised:
2021-03-05
Online:
2022-04-28
Published:
2022-06-18
Contact:
Qingshan Huang,E-mail:huangqs@qibebt.ac.cn;Chao Yang,E-mail:chaoyang@ipe.ac.cn
Supported by:
摘要: Slurry reactors are popular in many industrial processes, involved with numerous chemical and biological mixtures, solid particles with different concentrations and properties, and a wide range of operating conditions. These factors can significantly affect the hydrodynamic in the slurry reactors, having remarkable effects on the design, scale-up, and operation of the slurry reactors. This article reviews the influences of fluid physical properties, solid particles, and operating conditions on the hydrodynamics in slurry reactors. Firstly, the influence of fluid properties, including the density and viscosity of the individual liquid and gas phases and the interfacial tension, has been reviewed. Secondly, the solid particle properties (i.e., concentration, density, size, wettability, and shape) on the hydrodynamics have been discussed in detail, and some vital but often ignored features, especially the influences of particle wettability and shape, as well as the variation of surface tension because of solid concentration alteration, are highlighted in this work. Thirdly, the variations of physical properties of fluids, hydrodynamics, and bubble behavior resulted from the temperature and pressure variations are also summarized, and the indirect influences of pressure on viscosity and surface tension are addressed systematically. Finally, conclusions and perspectives of these notable influences on the design and scale-up of industrial slurry reactors are presented.
He Yang, Aqiang Chen, Shujun Geng, Jingcai Cheng, Fei Gao, Qingshan Huang, Chao Yang. Influences of fluid physical properties, solid particles, and operating conditions on the hydrodynamics in slurry reactors[J]. 中国化学工程学报, 2022, 44(4): 51-71.
He Yang, Aqiang Chen, Shujun Geng, Jingcai Cheng, Fei Gao, Qingshan Huang, Chao Yang. Influences of fluid physical properties, solid particles, and operating conditions on the hydrodynamics in slurry reactors[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 51-71.
[1] T.F. Wang, J.F. Wang, Y. Jin, Slurry reactors for gas-to-liquid processes:A review, Ind. Eng. Chem. Res. 46 (18) (2007) 5824-5847 [2] Y.X. Guo, M.N. Rathor, H.C. Ti, Hydrodynamics and mass transfer studies in a novel external-loop airlift reactor, Chem. Eng. J. 67 (3) (1997) 205-214 [3] J. Lin, M.H. Han, T.F. Wang, T.W. Zhang, J.F. Wang, Y. Jin, Influence of the gas distributor on the local hydrodynamic behavior of an external loop airlift reactor, Chem. Eng. J. 102 (1) (2004) 51-59. [4] J.P. Wen, P. Lei Han Wei, L.P. Du, G.Z. Mao, The denitrification of nitrate contained wastewater in a gas-liquid-solid three-phase flow airlift loop bioreactor, Biochem. Eng. J. 15 (2) (2003) 153-157 [5] Z. Al-Qodah, W. Lafi, Modeling of antibiotics production in magneto three-phase airlift fermenter, Biochem Eng J 7 (1) (2001) 7-16 [6] Q.S. Huang, T.Z. Liu, J. Yang, L.S. Yao, L.L. Gao, Evaluation of radiative transfer using the finite volume method in cylindrical photoreactors, Chem. Eng. Sci. 66 (17) (2011) 3930-3940 [7] Q.S. Huang, L.S. Yao, T.Z. Liu, J. Yang, Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum, Chem. Eng. Sci. 84 (2012) 718-726 [8] Q.S. Huang, F.H. Jiang, L.Z. Wang, C. Yang, Design of photobioreactors for mass cultivation of photosynthetic organisms, Engineering 3 (3) (2017) 318-329 [9] C. Li, J. Li, T.F. Yang, W. Deng, Formation of Ni-MoS3 hollow material with enhanced activity in slurry-phase hydrogenation of heavy oil, Energy Fuels 33 (11) (2019) 10933-10940 [10] X. Guo, L.S. Yao, Q.S. Huang, Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae, Bioresour Technol 190 (2015) 189-195 [11] H. Zou, T. Pan, Y.W. Shi, Y.W. Cheng, L.J. Wang, Y. Zhang, X. Li, Light olefin production by catalytic co-cracking of Fischer-Tropsch distillate with methanol and the reaction kinetics investigation, Chin. J. Chem. Eng. 28 (1) (2020) 143-151 [12] S. Kara, B.G. Kelkar, Y.T. Shah, N.L. Carr, Hydrodynamics and axial mixing in a three-phase bubble column, Ind. Eng. Chem. Proc. Des. Dev. 21 (4) (1982) 584-594 [13] S. Orvalho, M. Hashida, M. Zednikova, P. Stanovsky, M.C. Ruzicka, S. Sasaki, A. Tomiyama, Flow regimes in slurry bubble column:Effect of column height and particle concentration, Chem. Eng. J. 351 (2018) 799-815 [14] K.H. Choi, W.K. Lee, Circulation liquid velocity, gas holdup and volumetric oxygen transfer coefficient in external-loop airlift reactors, J. Chem. Technol. Biotechnol. 56 (1) (2007) 51-58 [15] R.F. Mudde, W.K. Harteveld, H.E.A. van den Akker, Uniform flow in bubble columns, Ind. Eng. Chem. Res. 48 (1) (2009) 148-158 [16] J.R. Crabtree, J. Bridgwater, Bubble coalescence in viscous liquids, Chem. Eng. Sci. 26 (6) (1971) 839-851 [17] K.N. Clark, The effect of high pressure and temperature on phase distributions in a bubble column, Chem. Eng. Sci. 45 (8) (1990) 2301-2307 [18] H. Chaumat, A.M. Billet, H. Delmas, Hydrodynamics and mass transfer in bubble column:Influence of liquid phase surface tension, Chem. Eng. Sci. 62 (24) (2007) 7378-7390 [19] M. Milivojevic, S. Pavlou, B. Bugarski, Liquid velocity in a high-solids-loading three-phase external-loop airlift reactor, J. Chem. Technol. Biotechnol. 87 (11) (2012) 1529-1540 [20] M.J. Bly, R.M. Worden, Gas holdup in a three-phase fluidized-bed bioreactor, Appl. Biochem. Biotechnol. 24-25 (1) (1990) 553-564 [21] B.G. Kelkar, Y.T. Shah, N.L. Carr, Hydrodynamics and axial mixing in a three-phase bubble column. Effects of slurry properties, Ind. Eng. Chem. Proc. Des. Dev. 23 (2) (1984) 308-313 [22] S.D. Kim, C.G.I. Baker, M.A. Bergougnou, Phase holdup characteristics of three phase fluidized beds, Can. J. Chem. Eng. 53 (1) (1975) 134-139 [23] P. Sastaravet, S. Bun, K. Wongwailikhit, N. Chawaloesphonsiya, M. Fujii, P. Painmanakul, Relative effect of additional solid media on bubble hydrodynamics in bubble column and airlift reactors towards mass transfer enhancement, Processes 8 (6) (2020) 713 [24] H. Xiao, S.J. Geng, A. Chen, C. Yang, F. Gao, T.B. He, Q.S. Huang, Bubble formation in continuous liquid phase under industrial jetting conditions, Chem. Eng. Sci. 200 (2019) 214-224 [25] R.J. Zou, X.Z. Jiang, B.Z. Li, Y. Zu, L.Q. Zhang, Studies on gas holdup in a bubble column operated at elevated temperatures, Ind. Eng. Chem. Res. 27 (10) (1988) 1910-1916 [26] J.M. Fox, Fischer-Tropsch reactor selection, Catal. Lett. 7 (1-4) (1990) 281-292 [27] L. Kundakovic, G. Vunjak-Novakovic, A fluid dynamic model of the draft tube gas-liquid-solid fluidized bed, Chem. Eng. Sci. 50 (23) (1995) 3763-3775 [28] J.J. Heijnen, J. Hols, R.G.J.M. van der Lans, H.L.J.M. van Leeuwen, A. Mulder, R. Weltevrede, A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime, Chem. Eng. Sci. 52 (15) (1997) 2527-2540 [29] E. Sada, H. Kumazawa, C. Lee, T. Iguchi, Gas holdup and mass-transfer characteristics in a three-phase bubble column, Ind. Eng. Chem. Proc. Des. Dev. 25 (2) (1986) 472-476 [30] R. Krishna, M.I. Urseanu, J.M. van Baten, J. Ellenberger, Rise velocity of a swarm of large gas bubbles in liquids, Chem. Eng. Sci. 54 (2) (1999) 171-183 [31] S. Rabha, M. Schubert, M. Wagner, D. Lucas, U. Hampel, Bubble size and radial gas hold-up distributions in a slurry bubble column using ultrafast electron beam X-ray tomography, Aiche J. 59 (5) (2013) 1709-1722 [32] M.H. Abdel-Aziz, I. Nirdosh, G.H. Sedahmed, Liquid-solid mass and heat transfer behavior of a concentric tube airlift reactor, Int. J. Heat Mass Transf. 58 (1-2) (2013) 735-739 [33] B. Gandhi, A. Prakash, M.A. Bergougnou, Hydrodynamic behavior of slurry bubble column at high solids concentrations, Powder Technol. 103 (2) (1999) 80-94 [34] C. Maretto, R. Krishna, Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis, Catal. Today 52 (2-3) (1999) 279-289 [35] H. Jin, D. Liu, S. Yang, G. He, Z. Guo, Z. Tong, Experimental study of oxygen mass transfer coefficient in bubble column with high temperature and high pressure, Chem. Eng. Technol. 27 (12) (2004) 1267-1272 [36] H. Kojima, S.W. Jun, H. Suzuki, Effect of pressure on volumetric mass transfer coefficient and gas holdup in bubble column, Chem. Eng. Sci. 52 (21-22) (1997) 4111-4116 [37] H.M. Letzel, J.C. Schouten, R. Krishna, C.M. van den Bleek, Gas holdup and mass transfer in bubble column reactors operated at elevated pressure, Chem. Eng. Sci. 54 (13-14) (1999) 2237-2246 [38] R. Lau, W. Peng, L.G. Velazquez-Vargas, G.Q. Yang, L.S. Fan, Gas-Liquid mass transfer in high-pressure bubble columns, Ind. Eng. Chem. Res. 43 (5) (2004) 1302-1311 [39] C.P. Ribeiro Jr, D. Mewes, The influence of electrolytes on gas hold-up and regime transition in bubble columns, Chem. Eng. Sci. 62 (17) (2007) 4501-4509 [40] B. Gourich, C. Vial, A.H. Essadki, F. Allam, M. Belhaj Soulami, M. Ziyad, Identification of flow regimes and transition points in a bubble column through analysis of differential pressure signal-Influence of the coalescence behavior of the liquid phase, Chem. Eng. Process.:Process. Intensif. 45 (3) (2006) 214-223 [41] M.C. Ruzicka, J. Drahoš, P.C. Mena, J.A. Teixeira, Effect of viscosity on homogeneous-heterogeneous flow regime transition in bubble columns, Chem. Eng. J. 96 (1-3) (2003) 15-22 [42] S.H. Eissa, K. Schügerl, Holdup and backmixing investigations in cocurrent and countercurrent bubble columns, Chem. Eng. Sci. 30 (10) (1975) 1251-1256 [43] G. Besagni, F. Inzoli, G. De Guido, L.A. Pellegrini, The dual effect of viscosity on bubble column hydrodynamics, Chem. Eng. Sci. 158 (2017) 509-538 [44] Otake T, Tone S, Nakao K, Mitsuhashi Y, Coalescence and breakup of bubbles in liquids, Chem. Eng. Sci. 32 (4) (1997) 377-383 44 [45] Walter J.F., Blanch B.W., Bubble break-up in gas-liquid bioreactors:Break-up in turbulent flows, Chem. Eng. J. 32 (1) (1986) 7-17 [46] S.S. Öztürk, A. Schumpe, W.D. Deckwer, Organic liquids in a bubble column:Holdups and mass transfer coefficients, AIChE J. 33 (9) (1987) 1473-1480 [47] R. Krishna, P.M. Wilkinson, L.L. van Dierendonck, A model for gas holdup in bubble columns incorporating the influence of gas density on flow regime transitions, Chem. Eng. Sci. 46 (10) (1991) 2491-2496 [48] P.M. Wilkinson, L.L. v Dierendonck, Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns, Chem. Eng. Sci. 45 (8) (1990) 2309-2315 [49] R.R. Hughes, A.E. Handlos, H.D. Evans, R.L. Maycock, The formation of bubbles at simple orifices, Chem. Eng. Prog. 51 (12) (1955) 557-563 [50] M. Jamialahmadi, M.R. Zehtaban, H. Müller-Steinhagen, A. Sarrafi, J.M. Smith, Study of bubble formation under constant flow conditions, Chem. Eng. Res. Des. 79 (5) (2001) 523-532 [51] J.F. Davidson, B.O.G. Schüler, Bubble formation at an orifice in a viscous liquid, Chem. Eng. Res. Des. 75 (1997) S105-S115 [52] P. Dargar, A. Macchi, Effect of surface-active agents on the phase holdups of three-phase fluidized beds, Chem. Eng. Process.:Process. Intensif. 45 (9) (2006) 764-772 [53] H. Li, A. Prakash, A. Margaritis, M.A. Bergougnou, Effects of micron-sized particles on hydrodynamics and local heat transfer in a slurry bubble column, Powder Technol. 133 (1-3) (2003) 171-184 [54] A.S. Khare, J.B. Joshi, Effect of fine particles on gas hold-up in three-phase sparged reactors, Chem. Eng. J. 44 (1) (1990) 11-25 [55] H. Li, A. Prakash, Heat transfer and hydrodynamics in a three-phase slurry bubble column, Ind. Eng. Chem. Res. 36 (11) (1997) 4688-4694 [56] T. Yang, S.J. Geng, C. Yang, Q.S. Huang, Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification, Chem. Eng. Sci. 184 (2018) 126-133 [57] S.J. Geng, Z. Li, H.Y. Liu, C. Yang, F. Gao, T.B. He, Q.S. Huang, Hydrodynamics and mass transfer in a slurry external airlift loop reactor integrating mixing and separation, Chem. Eng. Sci. 211 (2020) 115294 [58] H. Li, A. Prakash, Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column, Powder Technol. 113 (1-2) (2000) 158-167 [59] M.Y. Chisti, M. Moo-Young, Airlift reactors:characteristics, applications and design considerations, Chem. Eng. Commun. 60 (1-6) (1987) 195-242 [60] H.M. Letzel, J.C. Schouten, C.M. van den Bleek, R. Krishna, Influence of elevated pressure on the stability of bubbly flows, Chem. Eng. Sci. 52 (21-22) (1997) 3733-3739 [61] B.N. Thorat, J.B. Joshi, Regime transition in bubble columns:experimental and predictions, Exp. Therm. Fluid Sci. 28 (5) (2004) 423-430 [62] W.P. Zhang, Y.M. Yong, G.J. Zhang, C. Yang, Z.S. Mao, Mixing characteristics and bubble behavior in an airlift internal loop reactor with low aspect ratio, Chin. J. Chem. Eng. 22 (6) (2014) 611-621 [63] C. Yang, Z.-S. Mao, Design, Scale-up and Process Intensification of Multiphase Reactors, Chemical Industry Press, Beijing, 2020 [64] R. Krishna, J. Ellenberger, Gas holdup in bubble column reactors operating in the churn-turbulent flow regime, AIChE J. 42 (9) (1996) 2627-2634 [65] S. Papari, M. Kazemeini, M. Fattahi, Modelling-based optimisation of the direct synthesis of dimethyl ether from syngas in a commercial slurry reactor, Chin. J. Chem. Eng. 21 (6) (2013) 611-621 [66] Q.S. Huang, W.P. Zhang, C. Yang, Z.S. Mao, Characteristics of multiphase flow, mixing and transport phenomena in airlift loop reactor, CIESC J. (2014) 65(7)2465-2473. (in Chinese) [67] P.C. Mena, M.C. Ruzicka, F.A. Rocha, J.A. Teixeira, J. Drahoš, Effect of solids on homogeneous-heterogeneous flow regime transition in bubble columns, Chem. Eng. Sci. 60 (22) (2005) 6013-6026 [68] A. Mota, A.A. Vicente, J. Teixeira, Effect of spent grains on flow regime transition in bubble column, Chem. Eng. Sci. 66 (14) (2011) 3350-3357 [69] C.O. Vandu, K. Koop, R. Krishna, Large bubble sizes and rise velocities in a bubble column slurry reactor, Chem. Eng. Technol. 27 (11) (2004) 1195-1199 [70] H.Y. Liu, Z. Li, S.J. Geng, F. Gao, T.B. He, Q.S. Huang, Influences of top clearance and liquid throughput on the performances of an external loop airlift slurry reactor integrated mixing and separation, Chin. J. Chem. Eng. 28 (6) (2020) 1514-1521 [71] J.L. Tao, J.G. Huang, S.J. Geng, F. Gao, T.B. He, Q.S. Huang, Experimental investigation of hydrodynamics and mass transfer in a slurry multistage internal airlift loop reactor, Chem. Eng. J. 386 (2020) 122769 [72] P. Chen, P. Gupta, M.P. Dudukovic, B.A. Toseland, Hydrodynamics of slurry bubble column during dimethyl ether (DME) synthesis:Gas-liquid recirculation model and radioactive tracer studies, Chem. Eng. Sci. 61 (19) (2006) 6553-6570 [73] D.B. Bukur, J.G. Daly, S.A. Patel, Application of γ-ray attenuation for measurement of gas holdups and flow regime transitions in bubble columns, Ind. Eng. Chem. Res. 35 (1) (1996) 70-80 [74] S.C. Saxena, B.B. Patel, Heat transfer and hydrodynamic investigations in a baffled bubble column:air-water-glass bead system, Chem. Eng. Commun. 98 (1) (1990) 65-88 [75] T.F. Wang, J.F. Wang, B. Zhao, F. Ren, Y. Jin, Local hydrodynamics in an external loop airlift slurry reactor with and without a resistance-regulating element, Chem. Eng. Commun. 191 (8) (2004) 1024-1042 [76] K.C. Ruthiya, V.P. Chilekar, M.J.F. Warnier, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, J.R. van Ommen, Detecting regime transitions in slurry bubble columns using pressure time series, AIChE J. 51 (7) (2005) 1951-1965 [77] R. Krishna, J.W.A. de Swart, J. Ellenberger, G.B. Martina, C. Maretto, Gas holdup in slurry bubble columns:Effect of column diameter and slurry concentrations, AIChE J. 43 (2) (1997) 311-316 [78] E. Sada, H. Kumazawa, C.H. Lee, Influences of suspended fine particles on gas holdup and mass transfer characteristics in a slurry bubble column, AIChE J. 32 (5) (1986) 853-856 [79] M. Immich, B.T. Yu, D. Hollmann, U. Onken, Stoffübergang in einem Airlift-Schlaufenreaktor mit suspendiertem Feststoff, Chemie Ingenieur Tech. 62 (11) (1990) 945-947 [80] T. Sauer, D.C. Hempel, Fluid dynamics and mass transfer in a bubble column with suspended particles, Chem. Eng. Technol. 10 (1) (1987) 180-189 [81] K. Koide, K. Horibe, H. Kawabata, S. Ito, Gas holdup and volumetric liquid-phase mass transfer coefficient in solid-suspended bubble column with draught tube, J. Chem. Eng. Jpn.18 (3) (1985) 248-254 [82] Y. Sato, K. Sekoguchi, Liquid velocity distribution in two-phase bubble flow, Int. J. Multiph. Flow 2 (1) (1975) 79-95 [83] H. Dhaouadi, S. Poncin, J.M. Hornut, G. Wild, Solid effects on hydrodynamics and heat transfer in an external loop airlift reactor, Chem. Eng. Sci. 61 (4) (2006) 1300-1311 [84] M.L. Liu, T.F. Wang, W. Yu, J.F. Wang, Hydrodynamics of a slurry airlift reactor at high solid concentrations, Chem. Eng. Sci. 62 (24) (2007) 7098-7106 [85] B. Jin, P.H. Yin, P. Lant, Hydrodynamics and mass transfer coefficient in three-phase air-lift reactors containing activated sludge, Chem. Eng. Process.:Process. Intensif. 45 (7) (2006) 608-617 [86] A. Chen, W.S. Yang, S.J. Geng, F. Gao, T.B. He, Z.B. Wang, Q.S. Huang, Modeling of microbubble flow and coalescence behavior in the contact zone of a dissolved air flotation tank using a computational fluid dynamics-population balance model, Ind. Eng. Chem. Res. 58 (36) (2019) 16989-17000 [87] J. Zahradník, M. Fialová, M. Ružička, J. Drahos, F. Kastánek, N.H. Thomas, Duality of the gas-liquid flow regimes in bubble column reactors, Chem. Eng. Sci. 52 (21-22) (1997) 3811-3826 [88] C.W.J. Beenakker, The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion), Phys. A:Stat. Mech. Appl. 128 (1-2) (1984) 48-81 [89] G.K. Batchelor, J.T. Green, The determination of the bulk stress in a suspension of spherical particles to order c 2, J. Fluid Mech. 56 (3) (1972) 401 [90] W.B. Russel, A.P. Gast, Nonequilibrium statistical mechanics of concentrated colloidal dispersions:Hard spheres in weak flows, J. Chem. Phys. 84 (3) (1986) 1815-1826 [91] D.G. Thomas, Transport characteristics of suspension:VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, J. Colloid Sci. 20 (3) (1965) 267-277 [92] T.F. Ford, Viscosity-concentration and fluidity-concentration relationships for suspensions of spherical particles in Newtonian liquids, J. Phys. Chem. 64 (9) (1960) 1168-1174 [93] V. Vand, Viscosity of solutions and suspensions; theory, J Phys Colloid Chem 52 (2) (1948) 277-299 [94] van der Werff JC, de Kruif CG, C. Blom, J. Mellema, Linear viscoelastic behavior of dense hard-sphere dispersions, Phys Rev A Gen Phys 39 (2) (1989) 795-807 [95] V.P. Chilekar, M.J.F. Warnier, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, J.R. van Ommen, Bubble size estimation in slurry bubble columns from pressure fluctuations, AIChE J. 51 (7) (2005) 1924-1937 [96] M.E. Abou-EI-Hassan, Correlations for bubble rise in gas-liquid systems, Encyclopaedia Fluid Mech., 3 (1983) 110 [97] N. Hooshyar, P.J. Hamersma, R.F. Mudde, J.R. van Ommen, Intensified operation of slurry bubble columns using structured gas injection, Can. J. Chem. Eng. 88 (4) (2010) 533-542 [98] E. Bekassy-Molnar, J.G. Majeed, G. Vatai, Overall volumetric oxygen transfer coefficient and optimal geometry of airlift tube reactor, Chem. Eng. J. 68 (1) (1997) 29-33 [99] A. Behkish, Z.W. Men, J.R. Inga, B.I. Morsi, Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures, Chem. Eng. Sci. 57 (16) (2002) 3307-3324 [100] G. Quicker, A. Schumpe, W.D. Deckwer, Gas-liquid interfacial areas in a bubble column with suspended solids, Chem. Eng. Sci. 39 (1) (1984) 179-183 [101] A. Ferreira, C. Ferreira, J.A. Teixeira, F. Rocha, Temperature and solid properties effects on gas-liquid mass transfer, Chem. Eng. J. 162 (2) (2010) 743-752 [102] B.C. Smith, D.R. Skidmore, Mass transfer phenomena in an airlift reactor:effects of solids loading and temperature, Biotechnol Bioeng 35 (5) (1990) 483-491 [103] C.O. Vandu, K. Koop, R. Krishna, Volumetric mass transfer coefficient in a slurry bubble column operating in the heterogeneous flow regime, Chem. Eng. Sci. 59 (22-23) (2004) 5417-5423 [104] C.O. Vandu, R. Krishna, Volumetric mass transfer coefficients in slurry bubble columns operating in the churn-turbulent flow regime, Chem. Eng. Process.:Process. Intensif. 43 (8) (2004) 987-995 [105] S.C. Saxena, N.S. Rao, A.C. Saxena, Heat transfer from a cylindrical probe immersed in a three-phase slurry bubble column, Chem. Eng. J. 44 (3) (1990) 141-156 [106] K. Tsuchiya, A. Furumoto, L.S. Fan, J.P. Zhang, Suspension viscosity and bubble rise velocity in liquid-solid fluidized beds, Chem. Eng. Sci. 52 (18) (1997) 3053-3066 [107] G.Q. Yang, B. Du, L.S. Fan, Bubble formation and dynamics in gas-liquid-solid fluidization-A review, Chem. Eng. Sci. 62 (1-2) (2007) 2-27 [108] J. Thampi, A.B. Pandit, Rheological properties of concentrated distillery spent wash and some metal corrosion studies, Indian J. Chem. Technol. 6 (4) (1999) 185-193 [109] J. Liu, C.Y. Zhu, H. Zhou, T.T. Fu, Y.G. Ma, Bubble formation of slurry system and size prediction in microchannel, CIESC J., 71(2) (2020) 544-551. (in Chinese) [110] C. Wei, B. Wu, G.L. Li, K.Q. Chen, M. Jiang, P.K. Ouyang, Comparison of the hydrodynamics and mass transfer characteristics in internal-loop airlift bioreactors utilizing either a novel membrane-tube sparger or perforated plate sparger, Bioprocess Biosyst Eng 37 (11) (2014) 2289-2304 [111] M. Jamialahmadi, H. Müller-Steinhagen, Effect of solid particles on gas hold-up in bubble columns, Can. J. Chem. Eng. 69 (1) (1991) 390-393 [112] Y.L. Qi, M. Chen, S. Liang, W. Yang, J. Zhao, Micro-patterns of Au@SiO2 core-shell nanoparticles formed by electrostatic interactions, Appl. Surf. Sci. 254 (6) (2008) 1684-1690 [113] A. Pashkova, K. Svajda, R. Dittmeyer, Direct synthesis of hydrogen peroxide in a catalytic membrane contactor, Chem. Eng. J. 139 (1) (2008) 165-171 [114] A.B. Pandit, J.B. Joshi, Effect of physical properties on the suspension of solid particles in three-phase sparged reactors, Int. J. Multiph. Flow 13 (3) (1987) 415-427 [115] A.R. Sarhan, J. Naser, G. Brooks, Effects of particle size and concentration on bubble coalescence and froth formation in a slurry bubble column, Particuology 36 (2018) 82-95 [116] K. Wongwailikhit, P. Warunyuwong, N. Chawaloesphonsiya, N. Dietrich, G. Hébrard, P. Painmanakul, Gas sparger orifice sizes and solid particle characteristics in a bubble column-relative effect on hydrodynamics and mass transfer, Chem. Eng. Technol. 41 (3) (2018) 461-468 [117] M.I. Urseanu, R.P.M. Guit, A. Stankiewicz, G. van Kranenburg, J.H.G.M. Lommen, Influence of operating pressure on the gas hold-up in bubble columns for high viscous media, Chem. Eng. Sci. 58 (3-6) (2003) 697-704 [118] A. Shaikh, M. Al-Dahhan, Characterization of the hydrodynamic flow regime in bubble columns via computed tomography, Flow Meas. Instrum. 16 (2-3) (2005) 91-98 [119] T.J. Lin, K. Tsuchiya, L.S. Fan, Bubble flow characteristics in bubble columns at elevated pressure and temperature, AIChE J. 44 (3) (1998) 545-560 [120] C.L. Hyndman, F. Larachi, C. Guy, Understanding gas-phase hydrodynamics in bubble columns:a convective model based on kinetic theory, Chem. Eng. Sci. 52 (1) (1997) 63-77 [121] T.F. Wang, J.F. Wang, Y. Jin, Experimental study and CFD simulation of hydrodynamic behaviours in an external loop airlift slurry reactor, Can. J. Chem. Eng. 82 (6) (2004) 1183-1190 [122] T.F. Wang, J.F. Wang, Y. Jin, A CFD-PBM coupled model for gas-liquid flows, Aiche J. 52 (1) (2006) 125-140 [123] H. Al-Dahhan, Abdenour Kemoun, Boon Cheng Ong, Puneet Gupta, Muthanna, Milorad P. Dudukovic. Gas holdup in bubble columns at elevated pressure via computed tomography. International Journal of Multiphase Flow (2001) 27(5)929-946 [124] A. Ohnuki, H. Akimoto, Experimental study on transition of flow pattern and phase distribution in upward air-water two-phase flow along a large vertical pipe, Int. J. Multiph. Flow 26 (3) (2000) 367-386 [125] S. Degaleesan, M. Dudukovic, Y. Pan, Experimental study of gas-induced liquid-flow structures in bubble columns, AIChE J. 47 (9) (2001) 1913-1931 [126] J.H. Hills, Radial non-uniformity of velocity and voidage in a bubble column, Trans. Inst. Chem. Eng. 52 (1974) 1-52. [127] T. Menzel, T.I. der Weide, O. Staudacher, U. Onken, Reynolds shear stress for modeling of bubble column reactors, Ind Eng Chem Res 29 (6) (1990) 988-994 [128] H.P. Riquarts, A physical model for axial mixing of the liquid phase for heterogeneous flow regime in bubble columns, Ger. Chem. Eng. 4 (1) (1981) 18-23 [129] R. Krishna, J.M. van Baten, M.I. Urseanu, Three-phase Eulerian simulations of bubble column reactors operating in the churn-turbulent regime:a scale up strategy, Chem. Eng. Sci. 55 (16) (2000) 3275-3286 [130] Y.X. Wu, M.H. Al-Dahhan, Prediction of axial liquid velocity profile in bubble columns, Chem. Eng. Sci. 56 (3) (2001) 1127-1130 [131] J.C. Merchuk, Y. Stein, Local hold-up and liquid velocity in air-lift reactors, Aiche J. 27 (3) (1981) 377-388 [132] H. Tsuge, S.I. Hibino, Bubble formation from an orifice submerged in liquids, Chem. Eng. Commun. 22 (1-2) (1983) 63-79 [133] J.W.A. de Swart, R.E. van Vliet, R. Krishna, Size, structure and dynamics of "large" bubbles in a two-dimensional slurry bubble column, Chem. Eng. Sci. 51 (20) (1996) 4619-4629 [134] E. Camarasa, C. Vial, S. Poncin, G. Wild, N. Midoux, J. Bouillard, Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column, Chem. Eng. Process.:Process. Intensif. 38 (4-6) (1999) 329-344 [135] K. Akita, F. Yoshida, Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns, Ind. Eng. Chem. Proc. Des. Dev. 13 (1) (1974) 84-91 [136] E.S. Gaddis, A. Vogelpohl, Bubble formation in quiescent liquids under constant flow conditions, Chem. Eng. Sci. 41 (1) (1986) 97-105 [137] Q.S. Huang, W.P. Zhang, C. Yang, Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction, Chem. Eng. Sci. 135 (2015) 441-451 [138] Q.S. Huang, C. Yang, G.Z. Yu, Z.S. Mao, CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model, Chem. Eng. Sci. 65 (20) (2010) 5527-5536 [139] T. Miyahara, M. Hamaguchi, Y. Sukeda, T. Takahashl, Size of bubbles and liquid circulation in a bubble column with a draught tube and sieve plate, Can. J. Chem. Eng. 64 (5) (1986) 718-725 [140] H.Y. Wang, F. Dong, Y.C. Bian, C. Tan, Improved correlation for the volume of bubble formed in air-water system, Chin. J. Chem. Eng. 19 (3) (2011) 529-532 [141] M. Fukuma, K. Muroyama, A. Yasunishi, Properties of bubble swarm in a slurry bubble column, J. Chem. Eng. Japan 20 (1) (1987) 28-33 [142] A.A. Kulkarni, J.B. Joshi, Bubble formation and bubble rise velocity in gas-liquid systems:a review, Ind. Eng. Chem. Res. 44 (16) (2005) 5873-5931 [143] J.J. Jasper, The surface tension of pure liquid compounds, J. Phys. Chem. Ref. Data 1 (4) (1972) 841-1010 [144] J.R. Deam, R.N. Maddox, Interfacial tension in hydrocarbon systems, J. Chem. Eng. Data 15 (2) (1970) 216-222 [145] R. Pohorecki, W. Moniuk, A. Zdrójkowski, P. Bielski, Hydrodynamics of a pilot plant bubble column under elevated temperature and pressure, Chem. Eng. Sci. 56 (3) (2001) 1167-1174 [146] W.D. Deckwer, Y. Louisi, A. Zaidi, M. Ralek, Hydrodynamic properties of the Fischer-tropsch slurry process, Ind. Eng. Chem. Process. Des. Dev. 19 (4) (1980) 699-708 [147] G.S. Grover, C.V. Rode, R.V. Chaudhari, Effect of temperature on flow regimes and gas hold-up in a bubble column, Can. J. Chem. Eng. 64 (3) (1986) 501-504 [148] R. Schäfer, C. Merten, G. Eigenberger, Bubble size distributions in a bubble column reactor under industrial conditions, Exp. Therm. Fluid Sci. 26 (6-7) (2002) 595-604 [149] Y. Soong, F.W. Harke, I.K. Gamwo, R.R. Schehl, M.F. Zarochak, Hydrodynamic study in a slurry-bubble-column reactor, Catal. Today 35 (4) (1997) 427-434 [150] S.C. Saxena, Bubble column reactors and Fischer-tropsch synthesis, Catal. Rev. 37 (2) (1995) 227-309 [151] P.M. Wilkinson, H. Haringa, L.L. van Dierendonck, Mass transfer and bubble size in a bubble column under pressure, Chem. Eng. Sci. 49 (9) (1994) 1417-1427 [152] E.J. Slowinski, E.E. Gates, C.E. Waring, The effect of pressure on the surface tensions of liquids, J. Phys. Chem. 61 (6) (1957) 808-810 [153] O.K. Rice, The effect of pressure on surface tension, J. Chem. Phys. 15 (5) (1947) 333-335 [154] R. Massoudi, A.D. King Jr, Effect of pressure on the surface tension of water. Adsorption of low molecular weight gases on water at 25.deg, J. Phys. Chem. 78 (22) (1974) 2262-2266 [155] K. Stephan, D. Lucas, Vicosiv of Dense Fluids, Plenum Press, New York, 1979 [156] P.M. Wilkinson, A.P. Spek, L.L. van Dierendonck, Design parameters estimation for scale-up of high-pressure bubble columns, AIChE J. 38 (4) (1992) 544-554 [157] P.M. Wilkinson, A.P. Spek, L.L. van Dierendonck, Design parameters estimation for scale-up of high-pressure bubble columns, AIChE J. 38 (4) (1992) 544-554 [158] I.G. Reilly, D.S. Scott, T.J.W. Debruijn, D. MacIntyre, The role of gas phase momentum in determining gas holdup and hydrodynamic flow regimes in bubble column operations, Can. J. Chem. Eng. 72 (1) (1994) 3-12 [159] L.S. Fan, G.Q. Yang, D.J. Lee, K. Tsuchiya, X. Luo, Some aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions, Chem. Eng. Sci. 54 (21) (1999) 4681-4709 [160] P. Jiang, T.J. Lin, X. Luo, L.S. Fan, Flow visualization of high pressure (21 MPa) bubble column:bubble characteristics, Chem. Eng. Res. Des. 73 (1995) 269-274 [161] H. Kojima, B. Okumura, A. Nakamura, Effect of pressure on gas holdup in a bubble column and a slurry bubble column, J. Chem. Eng. Japan 24 (1) (1991) 115-117 [162] X.K. Luo, D.J. Lee, R. Lau, G.Q. Yang, L.S. Fan, Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns, AIChE J. 45 (4) (1999) 665-680 [163] M.H. Oyevaar, T. de la Rie, C.L. van der Sluijs, K.R. Westerterp, Interfacial areas and gas hold-ups in bubble columns and packed bubble columns at elevated pressures, Chem. Eng. Process.:Process. Intensif. 26 (1) (1989) 1-14 [164] X.K. Luo, G.Q. Yang, D.J. Lee, L.S. Fan, Single bubble formation in high pressure liquid-solid suspensions, Powder Technol. 100 (2-3) (1998) 103-112 [165] H.B. Jin, S.H. Yang, G.X. He, D.L. Liu, Z.M. Tong, J.H. Zhu, Gas-liquid mass transfer characteristics in a gas-liquid-solid bubble column under elevated pressure and temperature, Chin. J. Chem. Eng. 22 (9) (2014) 955-961 [166] L. Sehabiague, B.I. Morsi, Hydrodynamic and mass transfer characteristics in a large-scale slurry bubble column reactor for gas mixtures in actual Fischer-Tropsch cuts, Int. J. Chem. React. Eng. 11 (1) (2013):83-102 [167] R.D. La Nauze, I.J. Harris, Gas bubble formation at elevated system pressures, Trans. Inst. Chem. Eng., 52 (1974) 337-348 [168] G. Kling, Über Die dynamik der Blasenbildung beim begasen von Flüssigkeiten unter druck, Int. J. Heat Mass Transf. 5 (3-4) (1962) 211-223 [169] X.K. Luo, J. Zhang, K. Tsuchiya, L.S. Fan, On the rise velocity of bubbles in liquid-solid suspensions at elevated pressure and temperature, Chem. Eng. Sci. 52 (21-22) (1997) 3693-3699 [170] R. Lemoine, A. Behkish, B.I. Morsi, Hydrodynamic and mass-transfer characteristics in organic liquid mixtures in a large-scale bubble column reactor for the toluene oxidation process, Ind. Eng. Chem. Res. 43 (19) (2004) 6195-6212 [171] X.K. Luo, P.J. Jiang, L.S. Fan, High-pressure three-phase fluidization:hydrodynamics and heat transfer, Aiche J. 43 (10) (1997) 2432-2445 [172] V.R.R. Pendyala, G. Jacobs, M.S. Luo, B.H. Davis, Fischer-tropsch synthesis:effect of start-up solvent in a slurry reactor, Catal. Lett. 143 (5) (2013) 395-400 [173] L. Sehabiague, R. Lemoine, A. Behkish, Y.J. Heintz, M. Sanoja, R. Oukaci, B.I. Morsi, Modeling and optimization of a large-scale slurry bubble column reactor for producing 10, 000 bbl/day of Fischer-Tropsch liquid hydrocarbons, J. Chin. Inst. Chem. Eng. 39 (2) (2008) 169-179 [174] A.J. Dreher, R. Krishna, Liquid-phase backmixing in bubble columns, structured by introduction of partition plates, Catal. Today 69 (1-4) (2001) 165-170 [175] V.I. Savchenko, V.G. Dorokhov, I.A. Makaryan, I.V. Sedov, V.S. Arutyunov, Slurry reactor system with inertial separation for Fischer-Tropsch synthesis and other three-phase hydrogenation processes, Can. J. Chem. Eng. 94 (3) (2016) 518-523 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||