[1] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, Exp. Suppl. 101 (2012) 133-164 [2] S. Velazquez-Peña, C. Barrera-Díaz, I. Linares-Hernández, B. Bilyeu, S.A. Martínez-Delgadillo, An effective electrochemical Cr(VI) removal contained in electroplating industry wastewater and the chemical characterization of the sludge produced, Ind. Eng. Chem. Res. 51 (17) (2012) 5905-5910 [3] X. Su, A. Kushima, C. Halliday, J. Zhou, J. Li, T.A. Hatton, Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water, Nat. Commun. 9 (1) (2018) 4701 [4] M.S. Gaikwad, C. Balomajumder, Removal of Cr(VI) and fluoride by membrane capacitive deionization with nanoporous and microporous Limonia acidissima (wood apple) shell activated carbon electrode, Sep. Purif. Technol. 195 (2018) 305-313 [5] Y.X. Liu, D.X. Yuan, J.M. Yan, Q.L. Li, T. Ouyang, Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes, J. Hazard. Mater. 186 (1) (2011) 473-480 [6] K. Pillay, E.M. Cukrowska, N.J. Coville, Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution, J. Hazard. Mater. 166 (2-3) (2009) 1067-1075 [7] R. Dong, J.X. Zhang, B.Q. Zhou, J. Zhou, Application of a novel quaternized ammonium poly(vinyl alcohol)-based hybrid anion exchange membrane for the removal of Cr(VI) from wastewater, Water Sci. Technol. 70 (10) (2014) 1602-1609 [8] J.R. Parga, D.L. Cocke, V. Valverde, J.A.G. Gomes, M. Kesmez, H. Moreno, M. Weir, D. Mencer, Characterization of electrocoagulation for removal of chromium and arsenic, Chem. Eng. Technol. 28 (5) (2005) 605-612 [9] J. Yoon, G. Amy, J. Chung, J. Sohn, Y. Yoon, Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes, Chemosphere 77 (2) (2009) 228-235 [10] C.E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater. 223-224 (2012) 1-12 [11] P. Lakshmipathiraj, G. Bhaskar Raju, M. Raviatul Basariya, S. Parvathy, S. Prabhakar, Removal of Cr (VI) by electrochemical reduction, Sep. Purif. Technol. 60 (1) (2008) 96-102 [12] R.X. Mu, Z.Y. Xu, L.Y. Li, Y. Shao, H.Q. Wan, S.R. Zheng, On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction, J. Hazard. Mater. 176 (1-3) (2010) 495-502 [13] Z. Liu, L. Chen, L. Zhang, S. Poyraz, Z.H. Guo, X.Y. Zhang, J.H. Zhu, Ultrafast Cr(VI) removal from polluted water by microwave synthesized iron oxide submicron wires, Chem. Commun. (Camb) 50 (59) (2014) 8036-8039 [14] W.Y. Duan, G.D. Chen, C.X. Chen, R. Sanghvi, A. Iddya, S. Walker, H.Z. Liu, A. Ronen, D. Jassby, Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes, J. Membr. Sci. 531 (2017) 160-171 [15] G. Qin, M.J. McGuire, N.K. Blute, C. Seidel, L. Fong, Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration:A pilot-scale study, Environ. Sci. Technol. 39 (16) (2005) 6321-6327 [16] J.E. Dykstra, S. Porada, A. van der Wal, P.M. Biesheuvel, Energy consumption in capacitive deionization-Constant current versus constant voltage operation, Water Res. 143 (2018) 367-375 [17] M.A. Ahmed, S. Tewari, Capacitive deionization:Processes, materials and state of the technology, J. Electroanal. Chem. 813 (2018) 178-192 [18] J. Li, B.X. Ji, R. Jiang, P.P. Zhang, N. Chen, G.F. Zhang, L.T. Qu, Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization, Carbon 129 (2018) 95-103 [19] R. Chen, T. Sheehan, J.L. Ng, M. Brucks, X. Su, Capacitive deionization and electrosorption for heavy metal removal, Environ. Sci.:Water Res. Technol. 6 (2) (2020) 258-282 [20] C.C. Huang, Y.J. Su, Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths, J. Hazard. Mater. 175 (1-3) (2010) 477-483 [21] L.J. Liu, X.R. Guo, R. Tallon, X.K. Huang, J.H. Chen, Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization, Chem.Commun. (Camb) 53 (5) (2017) 881-884 [22] Z.L. Cao, C. Zhang, Z.X. Yang, Q. Qin, Z.H. Zhang, X.D. Wang, J. Shen, Preparation of carbon aerogel electrode for electrosorption of copper ions in aqueous solution, Materials (Basel) 12 (11) (2019) E1864 [23] L.F. Yang, Z. Shi, Enhanced electrosorption capacity for lead ion removal with polypyrrole and air-plasma activated carbon nanotube composite electrode, J. Appl. Polym. Sci. 132 (14) (2015) 41793 [24] Y.J. Zhang, J.Q. Xue, F. Li, J.Z. Dai, X.Z.Y. Zhang, Preparation of polypyrrole/chitosan/carbon nanotube composite nano-electrode and application to capacitive deionization process for removing Cu2+, Chem. Eng. Process. 139 (2019) 121-129 [25] H.T. Wang, C.Z. Na, Binder-free carbon nanotube electrode for electrochemical removal of chromium, ACS Appl. Mater. Interfaces 6 (22) (2014) 20309-20316 [26] L.F. Yang, Z. Shi, W.H. Yang, Enhanced capacitive deionization of lead ions using air-plasma treated carbon nanotube electrode, Surf. Coat. Technol. 251 (2014) 122-127 [27] S. Iftekhar, M.U. Farooq, M. Sillanpää, M.B. Asif, R. Habib, Removal of Ni(II) using multi-walled carbon nanotubes electrodes:Relation between operating parameters and capacitive deionization performance, Arab. J. Sci. Eng. 42 (1) (2017) 235-240 [28] A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J.W. Seo, M. Celio, S. Catsicas, B. Schwaller, L. Forró, Cellular toxicity of carbon-based nanomaterials, Nano Lett. 6 (6) (2006) 1121-1125 [29] R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification:A bright future in water desalination, Desalination 336 (2014) 97-109 [30] Z.B. Yang, T. Chen, R.X. He, G.Z. Guan, H.P. Li, L.B. Qiu, H.S. Peng, Aligned carbon nanotube sheets for the electrodes of organic solar cells, Adv. Mater. 23 (45) (2011) 5436-5439 [31] S. Roy, V. Jain, R. Bajpai, P. Ghosh, A.S. Pente, B.P. Singh, D.S. Misra, Formation of carbon nanotube bucky paper and feasibility study for filtration at the nano and molecular scale, J. Phys. Chem. C 116 (35) (2012) 19025-19031 [32] Y.M. Cai, X.T. Zhao, Y. Wang, D.Y. Ma, S.C. Xu, Enhanced desalination performance utilizing sulfonated carbon nanotube in the flow-electrode capacitive deionization process, Sep. Purif. Technol. 237 (2020) 116381 [33] X.L. Qu, P.J. Alvarez, Q.L. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (12) (2013) 3931-3946 [34] M. Majumder, B. Corry, Anomalous decline of water transport in covalently modified carbon nanotube membranes, Chem. Commun. (Camb) 47 (27) (2011) 7683-7685 [35] R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition:From fundamentals to applications, Mater. Today 17 (5) (2014) 236-246 [36] M. Weber, A. Julbe, A. Ayral, P. Miele, M. Bechelany, Atomic layer deposition for membranes:Basics, challenges, and opportunities, Chem. Mater. 30 (21) (2018) 7368-7390 [37] J.H. Feng, S. Xiong, Z.G. Wang, Z.L. Cui, S.P. Sun, Y. Wang, Atomic layer deposition of metal oxides on carbon nanotube fabrics for robust, hydrophilic ultrafiltration membranes, J. Membr. Sci. 550 (2018) 246-253 [38] H.H. Wang, M.J. Wei, Z.X. Zhong, Y. Wang, Atomic-layer-deposition-enabled thin-film composite membranes of polyimide supported on nanoporous anodized alumina, J. Membr. Sci. 535 (2017) 56-62 [39] S. Xiong, Y. Yang, Z. Zhong, Y. Wang, One-step synthesis of carbon-hybridized ZnO on polymeric foams by atomic layer deposition for efficient absorption of oils from water, Ind. Eng. Chem. Res. 57 (4) (2018) 1269-1276 [40] J.H. Feng, S. Xiong, Y. Wang, Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization, Sep. Purif. Technol. 213 (2019) 70-77 [41] H. Chen, S.S. Wu, X.J. Jia, S. Xiong, Y. Wang, Atomic layer deposition fabricating of ceramic nanofiltration membranes for efficient separation of dyes from water, AIChE J. 64 (7) (2018) 2670-2678 [42] S. Xiong, L. Kong, Z.X. Zhong, Y. Wang, Dye adsorption on zinc oxide nanoparticulates atomic-layer-deposited on polytetrafluoroethylene membranes, AIChE J. 62 (11) (2016) 3982-3991 [43] J.H. Feng, S. Xiong, Y. Wang, Atomic layer deposition of hybrid metal oxides on carbon nanotube membranes for photodegradation of dyes, Compos. Commun. 12 (2019) 39-46 [44] S. Boukhalfa, K. Evanoff, G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes, Energy Environ. Sci. 5 (5) (2012) 6872-6879 [45] M. Xie, X. Sun, H.T. Sun, T. Porcelli, S.M. George, Y. Zhou, J. Lian, Stabilizing an amorphous V2O5/carbon nanotube paper electrode with conformal TiO2 coating by atomic layer deposition for lithium ion batteries, J. Mater. Chem. A 4 (2) (2016) 537-544 [46] X. Sun, M. Xie, J.J. Travis, G.K. Wang, H.T. Sun, J. Lian, S.M. George, Pseudocapacitance of amorphous TiO2 thin films anchored to graphene and carbon nanotubes using atomic layer deposition, J. Phys. Chem. C 117 (44) (2013) 22497-22508 [47] L. Peng, Y.P. Chen, H. Dong, Q.R. Zeng, H.J. Song, L.Y. Chai, J.D. Gu, Removal of trace As(V) from water with the titanium dioxide/ACF composite electrode, Water Air Soil Pollut. 226 (7) (2015)1-11 [48] Q. Xu, Y. Yang, J. Yang, X.Z. Wang, Z.H. Wang, Y. Wang, Plasma activation of porous polytetrafluoroethylene membranes for superior hydrophilicity and separation performances via atomic layer deposition of TiO2, J. Membr. Sci. 443 (2013) 62-68 [49] X.F. Zhang, B. Wang, J. Yu, X.N. Wu, Y.H. Zang, H.C. Gao, P.C. Su, S.Q. Hao, Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization, RSC Adv. 8 (3) (2018) 1159-1167 [50] M.S. Gaikwad, C. Balomajumder, Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI):Multicomponent isotherm modeling and kinetic study, Sep. Purif. Technol. 186 (2017) 272-281 |