中国化学工程学报 ›› 2022, Vol. 45 ›› Issue (5): 1-14.DOI: 10.1016/j.cjche.2022.01.027
• • 下一篇
Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai
收稿日期:
2021-07-23
修回日期:
2022-01-23
出版日期:
2022-05-28
发布日期:
2022-06-22
通讯作者:
Zhiping Lai,E-mail:Zhiping.lai@kaust.edu.sa
基金资助:
Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai
Received:
2021-07-23
Revised:
2022-01-23
Online:
2022-05-28
Published:
2022-06-22
Contact:
Zhiping Lai,E-mail:Zhiping.lai@kaust.edu.sa
Supported by:
摘要: Conjugated microporous polymers (CMPs) are a unique class of porous organic materials, which are constructed with π-conjugation structures leading to intrinsic micropores. The CMPs properties such as high surface area, intrinsic and rich micropores, interlocking and rigid structure, extensive π-conjugation and tunable band-gap, chemical and thermal stability, together with tailored functionalities, contribute to its abundant potential for application in fields such as photocatalysis, optoelectronics, energy storage, and chemical sensors. Recently, CMPs have gained importance in the field of membranes for chemical separation. In this review, we briefly discuss the historical development of CMPs, followed by a detailed description of the progress in state-of-the-art design, preparation, and application of CMPs in membranes. Additionally, we provide inference on the future prospects of CMPs as membranes.
Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai. Conjugated microporous polymer membranes for chemical separations[J]. 中国化学工程学报, 2022, 45(5): 1-14.
Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai. Conjugated microporous polymer membranes for chemical separations[J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 1-14.
[1] R. Dashtpour, S.N. Al-Zubaidy, Energy efficient reverse osmosis desalination process, Int. J. Environ. Sci. Dev., 3 (2012) 339 [2] A. Asad, D. Sameoto, M. Sadrzadeh, Overview of membrane technology. Nanocomposite Membranes for Water and Gas Separation. Amsterdam:Elsevier, 2020:1-28 [3] D.F. Sanders, Z.P. Smith, R.L. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future:A review, Polymer 54 (18) (2013) 4729-4761 [4] Y.D. Cheng, Y.P. Ying, S. Japip, S.D. Jiang, T.S. Chung, S. Zhang, D. Zhao, Membrane technology:Advanced porous materials in mixed matrix membranes (adv. mater. 47/2018), Adv. Mater. 30 (47) (2018) 1870355 [5] Z.X. Kang, H.L. Guo, L.L. Fan, G. Yang, Y. Feng, D.F. Sun, S. Mintova, Scalable crystalline porous membranes:Current state and perspectives, Chem. Soc. Rev. 50 (3) (2021) 1913-1944 [6] J.C. Di, L. Li, Q.F. Wang, J.H. Yu, Porous membranes with special wettabilities:Designed fabrication and emerging application, CCS Chem. 3 (3) (2021) 2280-2297 [7] Z. Zhou, X. Li, D. Guo, D.B.". Shinde, D. Lu, L. Chen, X. Liu, L. Cao, A.M.". Aboalsaud, Y. Hu, Z. Lai, Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving">, Nat. Commun. 11"> (2020) 5323 [8] Z.Y. Zhou, D.W. Lu, X. Li, L.M. Rehman, A. Roy, Z.P. Lai, Fabrication of highly permeable polyamide membranes with large "leaf-like" surface nanostructures on inorganic supports for organic solvent nanofiltration, J. Membr. Sci. 601 (2020) 117932 [9] Q. Song, S. Cao, P. Zavala-Rivera, L.P. Lu, W. Li, Y. Ji, S.A. Al-Muhtaseb, A.K. Cheetham, E. Sivaniah, Photo-oxidative enhancement of polymeric molecular sieve membranes, Nat. Commun. 4 (2013) 1918 [10] A. Tavolaro, E. Drioli, Zeolite membranes, Adv. Mater. 11 (12) (1999) 975-996 [11] J. Caro, M. Noack, Zeolite membranes-Recent developments and progress, Microporous Mesoporous Mater. 115 (3) (2008) 215-233 [12] J.T. Duan, Y.C. Pan, F. Pacheco, E. Litwiller, Z.P. Lai, I. Pinnau, High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8, J. Membr. Sci. 476 (2015) 303-310 [13] Z. Lai, M. Tsapatsis, J.P. Nicolich, Siliceous ZSM-5 membranes by secondary growth ofb-oriented seed layers, Adv. Funct. Mater. 14 (7) (2004) 716-729 [14] X. Li, Y.X. Liu, J. Wang, J. Gascon, J.S. Li, B. van der Bruggen, Metal-organic frameworks based membranes for liquid separation, Chem. Soc. Rev. 46 (23) (2017) 7124-7144 [15] M.S. Denny Jr, J.C. Moreton, L. Benz, S.M. Cohen, Metal-organic frameworks for membrane-based separations, Nat. Rev. Mater. 1 (12) (2016) 16078 [16] A. Knebel, A. Bavykina, S.J. Datta, L. Sundermann, L. Garzon-Tovar, Y. Lebedev, S. Durini, R. Ahmad, S.M. Kozlov, G. Shterk, M. Karunakaran, I.D. Carja, D. Simic, I. Weilert, M. Klüppel, U. Giese, L. Cavallo, M. Rueping, M. Eddaoudi, J. Caro, J. Gascon, Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids, Nat. Mater. 19 (12) (2020) 1346-1353 [17] W.B. Li, Y.F. Zhang, C.Y. Zhang, Q. Meng, Z.H. Xu, P.C. Su, Q.B. Li, C. Shen, Z. Fan, L. Qin, G.L. Zhang, Transformation of metal-organic frameworks for molecular sieving membranes, Nat. Commun. 7 (2016) 11315 [18] S.S. Yuan, X. Li, J.Y. Zhu, G. Zhang, P. van Puyvelde, B. van der Bruggen, Covalent organic frameworks for membrane separation, Chem. Soc. Rev. 48 (10) (2019) 2665-2681 [19] Z.X. Kang, Y.W. Peng, Y.H. Qian, D.Q. Yuan, M.A. Addicoat, T. Heine, Z.G. Hu, L. Tee, Z.G. Guo, D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation, Chem. Mater. 28 (5) (2016) 1277-1285 [20] S. Kandambeth, B.P. Biswal, H.D. Chaudhari, K.C. Rout, S. Kunjattu H, S. Mitra, S. Karak, A. Das, R. Mukherjee, U.K. Kharul, R. Banerjee, Selective molecular sieving in self-standing porous covalent-organic-framework membranes, Adv. Mater. 29 (2) (2017) 1603945 [21] H. Xu, S.S. Tao, D.L. Jiang, Proton conduction in crystalline and porous covalent organic frameworks, Nat. Mater. 15 (7) (2016) 722-726 [22] N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs, Chem. Soc. Rev. 44 (20) (2015) 7128-7154 [23] S. Keskin, T. Van Heest, D. Sholl, Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3 (8) (2010) 879-891 [24] M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.K. Jeong, Current status of metal-organic framework membranes for gas separations:Promises and challenges, Ind. Eng. Chem. Res. 51 (5) (2012) 2179-2199 [25] J. Caro, M. Noack, Zeolite membranes-status and prospective. Advances in Nanoporous Materials. Amsterdam:Elsevier, 2010:1-96 [26] R. Baker, Future directions of membrane gas-separation technology, Membr. Technol. 2001 (138) (2001) 5-10 [27] R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E.W. Zhao, T. Liu, C. Ye, X. Zhou, B.P. Darwich, Z. Fan, Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage, Nat. Mater., 19 (2020) 195-202 [28] X.Q. Cheng, Z.X. Wang, X. Jiang, T.X. Li, C.H. Lau, Z.H. Guo, J. Ma, L. Shao, Towards sustainable ultrafast molecular-separation membranes:From conventional polymers to emerging materials, Prog. Mater. Sci. 92 (2018) 258-283 [29] M.X. Zhang, X.C. Jing, S. Zhao, P.P. Shao, Y.Y. Zhang, S. Yuan, Y.S. Li, C. Gu, X.Q. Wang, Y.C. Ye, X. Feng, B. Wang, Electropolymerization of molecular-sieving polythiophene membranes for H2 separation, Angew. Chem. 131 (26) (2019) 8860-8864 [30] A.I. Cooper, Conjugated microporous polymers, Adv. Mater. 21 (12) (2009) 1291-1295 [31] Y.H. Xu, S.B. Jin, H. Xu, A. Nagai, D.L. Jiang, Conjugated microporous polymers:Design, synthesis and application, Chem. Soc. Rev. 42 (20) (2013) 8012-8031 [32] R. Dawson, A. Laybourn, R. Clowes, Y.Z. Khimyak, D.J. Adams, A.I. Cooper, Functionalized conjugated microporous polymers, Macromolecules 42 (22) (2009) 8809-8816 [33] C. Gu, Y.C. Chen, Z.B. Zhang, S.F. Xue, S.H. Sun, K. Zhang, C.M. Zhong, H.H. Zhang, Y.Y. Pan, Y. Lv, Y.Q. Yang, F.H. Li, S.B. Zhang, F. Huang, Y.G. Ma, Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics, Adv. Mater. 25 (25) (2013) 3443-3448 [34] C. Gu, N. Huang, Y.C. Chen, L.Q. Qin, H. Xu, S.T. Zhang, F.H. Li, Y.G. Ma, D.L. Jiang, Π-conjugated microporous polymer films:Designed synthesis, conducting properties, and photoenergy conversions, Angew. Chem. Int. Ed Engl. 54 (46) (2015) 13594-13598 [35] J.X. Jiang, F.B. Su, A. Trewin, C.D. Wood, N.L. Campbell, H.J. Niu, C. Dickinson, A.Y. Ganin, M.J. Rosseinsky, Y.Z. Khimyak, A.I. Cooper, Conjugated microporous poly(aryleneethynylene) networks, Angew. Chem. Int. Ed Engl. 46 (45) (2007) 8574-8578 [36] S.H. Luo, Z.T. Zeng, G.M. Zeng, Z.F. Liu, R. Xiao, P. Xu, H. Wang, D.L. Huang, Y. Liu, B.B. Shao, Q.H. Liang, D.B. Wang, Q.Y. He, L. Qin, Y.K. Fu, Recent advances in conjugated microporous polymers for photocatalysis:Designs, applications, and prospects, J. Mater. Chem. A 8 (14) (2020) 6434-6470 [37] Z.J. Wang, S. Ghasimi, K. Landfester, K.A.I. Zhang, Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light, Chem. Mater. 27 (6) (2015) 1921-1924 [38] J. Byun, K.A.I. Zhang, Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations, Mater. Horiz. 7 (1) (2020) 15-31 [39] Y.L. Wong, J.M. Tobin, Z. Xu, F. Vilela, Conjugated porous polymers for photocatalytic applications, J. Mater. Chem. A 4 (48) (2016) 18677-18686 [40] Y.Z. Liao, Z.H. Cheng, W.W. Zuo, A. Thomas, C.F.J. Faul, Nitrogen-rich conjugated microporous polymers:Facile synthesis, efficient gas storage, and heterogeneous catalysis, ACS Appl. Mater. Interfaces 9 (44) (2017) 38390-38400 [41] A. Singh, S. Roy, C. Das, D. Samanta, T.K. Maji, Metallophthalocyanine-based redox active metal-organic conjugated microporous polymers for OER catalysis, Chem. Commun. 54 (35) (2018) 4465-4468 [42] Y.B. Zhou, Z.P. Zhan, Conjugated microporous polymers for heterogeneous catalysis, Chem. Asian J. 13 (1) (2018) 9-19 [43] W. Zhao, Y.Z. Jiao, J.J. Li, L.P. Wu, A.M. Xie, W. Dong, One-pot synthesis of conjugated microporous polymers loaded with superfine nano-palladium and their micropore-confinement effect on heterogeneously catalytic reduction, J. Catal. 378 (2019) 42-50 [44] S. Roy, A. Bandyopadhyay, M. Das, P.P. Ray, S.K. Pati, T.K. Maji, Redox-active and semi-conducting donor-acceptor conjugated microporous polymers as metal-free ORR catalysts, J. Mater. Chem. A 6 (14) (2018) 5587-5591 [45] Y.W. Zhang, Q.K. Sun, Z.P. Li, Y.F. Zhi, H. Li, Z.P. Li, H. Xia, X.M. Liu, Light-emitting conjugated microporous polymers based on an excited-state intramolecular proton transfer strategy and selective switch-off sensing of anions, Mater. Chem. Front. 4 (10) (2020) 3040-3046 [46] Q.J. Zhang, S. Yu, Q. Wang, Q. Xiao, Y. Yue, S.J. Ren, Fluorene-based conjugated microporous polymers:Preparation and chemical sensing application, Macromol. Rapid Commun. 38 (23) (2017) 1700445 [47] M.J. Wu, Y. Han, B. Wang, Y. Yuan, C.F. Xing, Y.L. Chen, S, N-heteroacene-based conjugated microporous polymers as fluorescent sensors and effective antimicrobial carriers, ACS Appl. Bio Mater. 1 (2) (2018) 473-479 [48] M.Y. Xu, T. Wang, P. Gao, L. Zhao, L. Zhou, D.B. Hua, Highly fluorescent conjugated microporous polymers for concurrent adsorption and detection of uranium, J. Mater. Chem. A 7 (18) (2019) 11214-11222 [49] S.J. Yang, X.S. Ding, B.H. Han, Conjugated microporous polymers with extended π-structures for organic vapor adsorption, Macromolecules 51 (3) (2018) 947-953 [50] Y.F. Xu, C. Zhang, P. Mu, N. Mao, X. Wang, Q. He, F. Wang, J.X. Jiang, Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution, Sci. China Chem. 60 (8) (2017) 1075-1083 [51] S. Yang, Y. Cao, T. Wang, S.Y. Cai, M.Y. Xu, W.H. Lu, D.B. Hua, Positively charged conjugated microporous polymers with antibiofouling activity for ultrafast and highly selective uranium extraction from seawater, Environ. Res. 183 (2020) 109214 [52] S. Wang, Y.C. Liu, Y. Yu, J.F. Du, Y.Z. Cui, X.W. Song, Z.Q. Liang, Conjugated microporous polymers based on biphenylene for CO2 adsorption and luminescence detection of nitroaromatic compounds, New J. Chem. 42 (12) (2018) 9482-9487 [53] K. Amin, N. Ashraf, L.J. Mao, C.F.J. Faul, Z.X. Wei, Conjugated microporous polymers for energy storage:Recent progress and challenges, Nano Energy 85 (2021) 105958 [54] Y. Kou, Y.H. Xu, Z.Q. Guo, D.L. Jiang, Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework, Angew. Chem. Int. Ed Engl. 50 (37) (2011) 8753-8757 [55] A.M. Khattak, H. Sin, Z.A. Ghazi, X. He, B. Liang, N.A. Khan, H.R. Alanagh, A. Iqbal, L.S. Li, Z.Y. Tang, Controllable fabrication of redox-active conjugated microporous polymers on reduced graphene oxide for high performance faradaic energy storage, J. Mater. Chem. A 6 (39) (2018) 18827-18832 [56] S. Bhunia, N. Dey, A. Pradhan, S. Bhattacharya, A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water, Chem. Commun. (Camb) 54 (54) (2018) 7495-7498 [57] J. Hynek, J. Rathouský, J. Demel, K. Lang, Design of porphyrin-based conjugated microporous polymers with enhanced singlet oxygen productivity, RSC Adv. 6 (50) (2016) 44279-44287 [58] A. Rengaraj, P. Puthiaraj, Y. Haldorai, N.S. Heo, S.K. Hwang, Y.K. Han, S. Kwon, W.S. Ahn, Y.S. Huh, Porous covalent triazine polymer as a potential nanocargo for cancer therapy and imaging, ACS Appl. Mater. Interfaces 8 (14) (2016) 8947-8955 [59] N. Miyaura, K. Yamada, A. Suzuki, A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Lett. 20 (36) (1979) 3437-3440 [60] N. Miyaura, A. Suzuki, Cheminform abstract:Stereoselective synthesis of arylated (e)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst, Chemischer Informationsdienst 11 (7) (1980):866-867 [61] Q.Q. Liu, Z. Tang, M.D. Wu, Z.H. Zhou, Design, preparation and application of conjugated microporous polymers, Polym. Int. 63 (3) (2014) 381-392 [62] T. Ben, H. Ren, S.Q. Ma, D.P. Cao, J.H. Lan, X.F. Jing, W.C. Wang, J. Xu, F. Deng, J.M. Simmons, S.L. Qiu, G.S. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area, Angew. Chem. Int. Ed Engl. 48 (50) (2009) 9457-9460 [63] J.X. Jiang, A. Trewin, D.J. Adams, A.I. Cooper, Band gap engineering in fluorescent conjugated microporous polymers, Chem. Sci. 2 (9) (2011) 1777 [64] J. Schmidt, M. Werner, A. Thomas, Conjugated microporous polymer networks via Yamamoto polymerization, Macromolecules 42 (13) (2009) 4426-4429 [65] L.B. Sun, Z.Q. Liang, J.H. Yu, R.R. Xu, Luminescent microporous organic polymers containing the 1, 3, 5-tri(4-ethenylphenyl)benzene unit constructed by Heck coupling reaction, Polym. Chem. 4 (6) (2013) 1932 [66] L.B. Sun, Y.C. Zou, Z.Q. Liang, J.H. Yu, R.R. Xu, A one-pot synthetic strategy via tandem Suzuki-Heck reactions for the construction of luminescent microporous organic polymers, Polym. Chem. 5 (2) (2014) 471-478 [67] K.W. Wang, L.M. Yang, X. Wang, L.P. Guo, G. Cheng, C. Zhang, S.B. Jin, B.E. Tan, A. Cooper, Covalent triazine frameworks via a low-temperature polycondensation approach, Angew. Chem. Int. Ed. 56 (45) (2017) 14149-14153 [68] O. Buyukcakir, R. Yuksel, Y. Jiang, S.H. Lee, W.K. Seong, X. Chen, R.S. Ruoff, Synthesis of porous covalent quinazoline networks (CQNs) and their gas sorption properties, Angewandte Chemie Int. Ed. 58 (3) (2019) 872-876 [69] S.Y. Yu, J. Mahmood, H.J. Noh, J.M. Seo, S.M. Jung, S.H. Shin, Y.K. Im, I.Y. Jeon, J.B. Baek, Direct synthesis of a covalent triazine-based framework from aromatic amides, Angew. Chem. Int. Ed. 57 (28) (2018) 8438-8442 [70] J.K. Stille, E. Mainen, Ladder polyquinoxalines, J. Polym. Sci. B Polym. Lett. 4 (1) (1966) 39-41 [71] J.K. Stille, E.L. Mainen, Thermally stable ladder polyquinoxalines, Macromolecules 1 (1) (1968) 36-42 [72] P. Pandey, A.P. Katsoulidis, I. Eryazici, Y.Y. Wu, M.G. Kanatzidis, S.T. Nguyen, Imine-linked microporous polymer organic frameworks, Chem. Mater. 22 (17) (2010) 4974-4979 [73] M.G. Rabbani, A.K. Sekizkardes, O.M. El-Kadri, B.R. Kaafarani, H.M. El-Kaderi, Pyrene-directed growth of nanoporous benzimidazole-linked nanofibers and their application to selective CO2 capture and separation, J. Mater. Chem. 22 (48) (2012) 25409 [74] C. Xu, N. Hedin, Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption, J. Mater. Chem. A 1 (10) (2013) 3406 [75] B.P. Biswal, D. Becker, N. Chandrasekhar, J.S. Seenath, S. Paasch, S. Machill, F. Hennersdorf, E. Brunner, J.J. Weigand, R. Berger, X.L. Feng, Exploration of thiazolo[5, 4-d]thiazole linkages in conjugated porous organic polymers for chemoselective molecular sieving, Chem. Eur. J. 24 (42) (2018) 10868-10875 [76] X. Zhu, C.C. Tian, T. Jin, J.T. Wang, S.M. Mahurin, W.W. Mei, Y. Xiong, J. Hu, X.L. Feng, H.L. Liu, S. Dai, Thiazolothiazole-linked porous organic polymers, Chem. Commun. (Camb) 50 (95) (2014) 15055-15058 [77] M.G. Rabbani, H.M. El-Kaderi, Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage, Chem. Mater. 23 (7) (2011) 1650-1653 [78] Y.W. Zhang, A. Sigen, Y.C. Zou, X.L. Luo, Z.P. Li, H. Xia, X.M. Liu, Y. Mu, Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer, J. Mater. Chem. A 2 (33) (2014) 13422-13430 [79] B.Y. Li, Z.H. Guan, X.J. Yang, W.D. Wang, W. Wang, I. Hussain, K.P. Song, B.E. Tan, T. Li, Multifunctional microporous organic polymers, J. Mater. Chem. A 2 (30) (2014) 11930 [80] J.S.M. Lee, A.I. Cooper, Advances in conjugated microporous polymers, Chem. Rev. 120 (4) (2020) 2171-2214 [81] H.W. Ma, Y. Chen, X.B. Li, B. Li, Advanced applications and challenges of electropolymerized conjugated microporous polymer films, Adv. Funct. Mater. 31 (33) (2021) 2101861 [82] B. Liang, H. Wang, X. Shi, B. Shen, X. He, Z.A. Ghazi, N.A. Khan, H. Sin, A.M. Khattak, L. Li, Z. Tang, Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration">, Nat. Chem. 10"> (9">) (2018) 961">-967"> [83] P.P. Shao, R.X. Yao, G. Li, M.X. Zhang, S. Yuan, X.Q. Wang, Y.H. Zhu, X.M. Zhang, L. Zhang, X. Feng, B. Wang, Molecular-sieving membrane by partitioning the channels in ultrafiltration membrane by in situ polymerization, Angew. Chem. Int. Ed Engl. 59 (11) (2020) 4401-4405 [84] K. Li, J.Y. Zhu, D.C. Liu, Y.T. Zhang, B. van der Bruggen, Controllable and rapid synthesis of conjugated microporous polymer membranes via interfacial polymerization for ultrafast molecular separation, Chem. Mater. 33 (17) (2021) 7047-7056 [85] P. Lindemann, M. Tsotsalas, S. Shishatskiy, V. Abetz, P. Krolla-Sidenstein, C. Azucena, L. Monnereau, A. Beyer, A. Gölzhäuser, V. Mugnaini, H. Gliemann, S. Bräse, C. Wöll, Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation, Chem. Mater. 26 (24) (2014) 7189-7193 [86] Y.N. Su, F. Wang, S.J. Wu, Y.K. Fan, W. Bai, S. Wang, H.X. Sun, Z.Q. Zhu, W.D. Liang, A. Li, Template-assisted preparation of conjugated microporous polymers membranes for selective separation, Sep. Purif. Technol. 259 (2021) 118203 [87] W. Liu, S.D. Jiang, Y.G. Yan, W.S. Wang, J. Li, K. Leng, S. Japip, J.T. Liu, H. Xu, Y.P. Liu, I.H. Park, Y. Bao, W. Yu, M.D. Guiver, S. Zhang, K.P. Loh, A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation, Nat. Commun. 11 (2020) 1633 [88] P.C. Liu, Z.W. Huang, X. He, J.J. Hou, W. Zheng, C.J. Liu, L.S. Li, Z.Y. Tang, Conjugated microporous polymer Janus membrane for dye rejection from water, J. Membr. Sci. 644 (2022) 120096 [89] Zhou Z, Guo D, Shinde DB, Cao L, Li Z, Li X, Lu D, Lai Z, Precise sub-angstrom ion separation using conjugated microporous polymer membranes, ACS Nano (2021) 2021Jun29 [90] Z.Y. Zhou, D.B. Shinde, D. Guo, L. Cao, R.A. Nuaimi, Y.T. Zhang, L.R. Enakonda, Z.P. Lai, Flexible ionic conjugated microporous polymer membranes for fast and selective ion transport, Adv. Funct. Mater. 32 (6) (2022) 2108672 [91] V. Senkovskyy, I. Senkovska, A. Kiriy, Surface-initiated synthesis of conjugated microporous polymers:Chain-growth kumada catalyst-transfer polycondensation at work, ACS Macro Lett. 1 (4) (2012) 494-498 [92] S. Edmondson, V.L. Osborne, W.T.S. Huck, Polymer brushes via surface-initiated polymerizations, Chem. Soc. Rev. 33 (1) (2004) 14 [93] E.E. Sheina, J.S. Liu, M.C. Iovu, D.W. Laird, R.D. McCullough, Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations, Macromolecules 37 (10) (2004) 3526-3528 [94] A. Yokoyama, R. Miyakoshi, T. Yokozawa, Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity, Macromolecules 37 (4) (2004) 1169-1171 [95] Y. Huang, Y. Zang, L. Xu, T.Y. Lei, J. Cui, Y.J. Xie, J.J. Wang, H.G. Jia, F.J. Miao, Synthesis of chiral conjugated microporous polymer composite membrane and improvements in permeability and selectivity during enantioselective permeation, Sep. Purif. Technol. 266 (2021) 118529 [96] J.J. Richardson, J.W. Cui, M. Björnmalm, J.A. Braunger, H. Ejima, F. Caruso, Innovation in layer-by-layer assembly, Chem. Rev. 116 (23) (2016) 14828-14867 [97] E.T. Seo, R.F. Nelson, J.M. Fritsch, L.S. Marcoux, D.W. Leedy, R.N. Adams, Anodic oxidation pathways of aromatic amines. electrochemical and electron paramagnetic resonance studies, J. Am. Chem. Soc. 88 (15) (1966) 3498-3503 [98] J.F. Ambrose, R.F. Nelson, Anodic oxidation pathways of carbazoles, J. Electrochem. Soc. 115 (11) (1968) 1159 [99] H.H. Zhang, Y.N. Zhang, C. Gu, Y.G. Ma, Electropolymerized conjugated microporous poly(zinc-porphyrin) films as potential electrode materials in supercapacitors, Adv. Energy Mater. 5 (10) (2015) 1402175 [100] S. Paleyanda Ponnappa, Electropolymerization studies of conjugated monomers and their biosensor applications. PhD Thesis. Queensland University of Technology, 2020. [101] Y. Lv, L. Yao, C. Gu, Y.X. Xu, Y.N. Zhang, Z.Q. Xie, L.L. Liu, Y.G. Ma, Cross-linked luminescent films via electropolymerization of multifunctional precursors for highly efficient electroluminescence, Polym. Chem. 4 (6) (2013) 2090 [102] R. Jean, Electrogenerated functional conjugated polymers as advanced electrode materials, J. Mater. Chem. 9 (9) (1999) 1875-1893 [103] J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Electrochemistry of conducting polymers:Persistent models and new concepts, Chem. Rev. 110 (8) (2010) 4724-4771 [104] K. Karon, M. Lapkowski, Carbazole electrochemistry:A short review, J. Solid State Electrochem. 19 (9) (2015) 2601-2610 [105] S. Karan, Z.W. Jiang, A.G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science 348 (6241) (2015) 1347-1351 [106] H. Mariën, I.F.J. Vankelecom, Transformation of cross-linked polyimide UF membranes into highly permeable SRNF membranes via solvent annealing, J. Membr. Sci. 541 (2017) 205-213 [107] M.F. Jimenez Solomon, Y. Bhole, A.G. Livingston, High flux membranes for organic solvent nanofiltration (OSN)-Interfacial polymerization with solvent activation, J. Membr. Sci. 423-424 (2012) 371-382 [108] Y. Li, Z. Guo, S. Li, B. van der Bruggen, Interfacially polymerized thin-film composite membranes for organic solvent nanofiltration, Adv. Mater. Interfaces 8 (3) (2021) 2001671 [109] Liu J, Hua D, Zhang Y, Japip S, Chung TS, Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules, Adv. Mater. 30 (11) (2018) 2018Mar;30(11) [110] J. Micovic, K. Werth, P. Lutze, Hybrid separations combining distillation and organic solvent nanofiltration for separation of wide boiling mixtures, Chem. Eng. Res. Des. 92 (11) (2014) 2131-2147 [111] C.N. Dai, Z.G. Lei, X.M. Xi, J.Q. Zhu, B.H. Chen, Extractive distillation with a mixture of organic solvent and ionic liquid as entrainer, Ind. Eng. Chem. Res. 53 (40) (2014) 15786-15791 [112] K. Nakashima, F. Kubota, T. Maruyama, M. Goto, Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes, Ind. Eng. Chem. Res. 44 (12) (2005) 4368-4372 [113] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O'Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science 329 (5990) (2010) 424-428 [114] D.B. Shinde, G. Sheng, X. Li, M. Ostwal, A.H. Emwas, K.W. Huang, Z.P. Lai, Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration, J. Am. Chem. Soc. 140 (43) (2018) 14342-14349 [115] M. Peyravi, A. Rahimpour, M. Jahanshahi, Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration, J. Membr. Sci. 423-424 (2012) 225-237 [116] P.B. Kosaraju, K.K. Sirkar, Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration, J. Membr. Sci. 321 (2) (2008) 155-161 [117] S. Sorribas, P. Gorgojo, C. Téllez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration, J. Am. Chem. Soc. 135 (40) (2013) 15201-15208 [118] X. He, H. Sin, B. Liang, Z.A. Ghazi, A.M. Khattak, N.A. Khan, H.R. Alanagh, L.S. Li, X.Q. Lu, Z.Y. Tang, Controlling the selectivity of conjugated microporous polymer membrane for efficient organic solvent nanofiltration, Adv. Funct. Mater. 29 (32) (2019) 1900134 [119] D. Guo, X. Li, W. Wahyudi, C.Y. Li, A.H. Emwas, M.N. Hedhili, Y.X. Li, Z.P. Lai, Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li-S batteries, ACS Nano 14 (12) (2020) 17163-17173 [120] D. Guo, X. Li, F.W. Ming, Z.Y. Zhou, H.F. Liu, M.N. Hedhili, V. Tung, H.N. Alshareef, Y.X. Li, Z.P. Lai, Electropolymerization growth of an ultrathin, compact, conductive and microporous (UCCM) polycarbazole membrane for high energy Li-S batteries, Nano Energy 73 (2020) 104769 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||