[1] Y.Y. Zeng, Y.F. Cao, X. Qiao, B.C. Seyler, Y. Tang, Air pollution reduction in China:Recent success but great challenge for the future, Sci Total Environ 663 (2019) 329-337 [2] L. Wang, G.Y. Xu, J.Z. Ma, Y.B. Yu, Q.X. Ma, K. Liu, C.B. Zhang, H. He, Nanodispersed Mn3O4/γ-Al2O3 for NO2 elimination at room temperature, Environ Sci Technol 53 (18) (2019) 10855-10862 [3] X.B. Shi, B.X. Chu, F. Wang, X.L. Wei, L.X. Teng, M.G. Fan, B. Li, L.H. Dong, L. Dong, Mn-modified CuO, CuFe2O4, and γ-Fe2O3 three-phase strong synergistic coexistence catalyst system for NO reduction by CO with a wider active window, ACS Appl Mater Interfaces 10 (47) (2018) 40509-40522 [4] S.X. Wang, J.M. Hao, Air quality management in China:Issues, challenges, and options, J Environ Sci (China) 24 (1) (2012) 2-13 [5] S.H. Zhang, Y.Y. Li, J.H. Huang, J. Lee, D.H. Kim, A.I. Frenkel, T. Kim, Effects of molecular and electronic structures in CoOx/CeO2 catalysts on NO reduction by CO, J. Phys. Chem. C 123 (12) (2019) 7166-7177 [6] H. Liu, Y.N. Yi, Z.Z. Qin, Y.H. Wu, L.L. Li, B.X. Chu, G.Z. Jin, R.N. Li, Z.F. Tong, L.H. Dong, B. Li, In situ diffuse reflectance infrared Fourier transform spectroscopy study of NO + CO reaction on La0.8Ce0.2Mn1-xFexO3 perovskites:Changes in catalytic properties caused by Fe incorporation, Ind. Eng. Chem. Res. 58 (21) (2019) 9065-9074 [7] G. Cheng, X.F. Tan, X.J. Song, X. Chen, W.X. Dai, R.S. Yuan, X.Z. Fu, Visible light assisted thermocatalytic reaction of CO + NO over Pd/LaFeO3, Appl. Catal. B:Environ. 251 (2019) 130-142 [8] J.J. Du, Y.P. Yuan, J.X. Sun, F.M. Peng, X. Jiang, L.G. Qiu, A.J. Xie, Y.H. Shen, J.F. Zhu, New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye, J Hazard Mater 190 (1-3) (2011) 945-951 [9] B. Wang, L.H. Xie, X.Q. Wang, X.M. Liu, J.P. Li, J.R. Li, Applications of metal-organic frameworks for green energy and environment:New advances in adsorptive gas separation, storage and removal, Green Energy Environ. 3 (3) (2018) 191-228 [10] Y.H. Qin, L. Huang, L. Zhang, H.B. He, One-step synthesis of confined ion Agx-Cu-BTC for selective catalytic reduction of NO with CO, Inorg. Chem. Commun. 102 (2019) 130-133 [11] Y. Wang, L. Zhang, R. Li, H.B. He, H.Y. Wang, L. Huang, MOFs-based coating derived Me-ZIF-67@CuOx materials as low-temperature NO-CO catalysts, Chem. Eng. J. 381 (2020) 122757 [12] Z.S. He, K. Wang, S.S. Zhu, L.G. Huang, M.M. Chen, J.F. Guo, S.E. Pei, H.B. Shao, J.M. Wang, MOF-derived hierarchical MnO-doped Fe3O4@C composite nanospheres with enhanced lithium storage, ACS Appl Mater Interfaces 10 (13) (2018) 10974-10985 [13] J. Zhou, Y.B. Dou, A.W. Zhou, R.M. Guo, M.J. Zhao, J.R. Li, MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction, Adv. Energy Mater. 7 (12) (2017) 1602643 [14] J. Zhou, Y.B. Dou, A. Zhou, L. Shu, Y. Chen, J.R. Li, Layered metal-organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction, ACS Energy Lett. 3 (7) (2018) 1655-1661 [15] H.X. Jiang, C.X. Wang, H.Q. Wang, M.H. Zhang, Synthesis of highly efficient MnOx catalyst for low-temperature NH3-SCR prepared from Mn-MOF-74 template, Mater. Lett. 168 (2016) 17-19 [16] Q.Y. Wang, H.L. Xu, W.T. Huang, Z.Q. Pan, H. Zhou, Metal organic frameworks-assisted fabrication of CuO/Cu2O for enhanced selective catalytic reduction of NOx by NH3 at low temperatures, J Hazard Mater 364 (2019) 499-508 [17] H. Wang, Z.P. Qu, S.C. Dong, C. Tang, Mechanism study of FeW mixed oxides to the selective catalytic reduction of NOx with NH3:In situ DRIFTS and MS, Catal. Today 307 (2018) 35-40 [18] J. Kim, S. Lee, D.W. Kwon, H.P. Ha, Er composition (X)-mediated catalytic properties of Ce1-XErXVO4 surfaces for selective catalytic NOx reduction with NH3 at elevated temperatures, Catal. Today 359 (2021) 65-75 [19] Q.L. Zhang, H.M. Wang, P. Ning, Z.X. Song, X. Liu, Y.K. Duan, In situ DRIFTS studies on CuO-Fe2O3 catalysts for low temperature selective catalytic oxidation of ammonia to nitrogen, Appl. Surf. Sci. 419 (2017) 733-743 [20] L.Y. Wang, X.X. Cheng, Z.Q. Wang, C.Y. Ma, Y.K. Qin, Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO, Appl. Catal. B:Environ. 201 (2017) 636-651 [21] A.Y. Li, M. Kaushik, C.J. Li, A. Moores, Microwave-assisted synthesis of magnetic carboxymethyl cellulose-embedded Ag-Fe3O4 nanocatalysts for selective carbonyl hydrogenation, ACS Sustain. Chem. Eng. 4 (3) (2016) 965-973 [22] H. Hu, K.W. Zha, H.R. Li, L.Y. Shi, D.S. Zhang, In situ DRIFTs investigation of the reaction mechanism over MnOx-MOy/Ce0.75Zr0.25O2 (M=Fe, Co, Ni, Cu) for the selective catalytic reduction of NOx with NH3, Appl. Surf. Sci. 387 (2016) 921-928 [23] L.J. Yan, Y.Y. Liu, K.W. Zha, H.R. Li, L.Y. Shi, D.S. Zhang, Scale-activity relationship of MnOx-FeOy nanocage catalysts derived from Prussian blue analogues for low-temperature NO reduction:Experimental and DFT studies, ACS Appl Mater Interfaces 9 (3) (2017) 2581-2593 [24] Y.R. Bai, J.P. Dong, Y.Q. Hou, Y.P. Guo, Y.J. Liu, Y.L. Li, X.J. Han, Z.G. Huang, Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NOx with NH3 at low temperature, Chem. Eng. J. 361 (2019) 703-712 [25] Q. Wang, W. Sun, T.Y. Xie, L.M. Cao, J. Yang, Metal-organic framework (MOF) template based efficient Pt/ZrO2@C catalysts for selective catalytic reduction of H2 below 90 ℃, Chem Asian J 14 (3) (2019) 416-421 [26] Z. Liu, G. X. Sun, C. Chen, K. Sun, L. Y. Zeng, L. Z. Yang, Y. J. Chen, W. H. Wang, B. Liu, Y. K. Lu, Y. Pan, Y. Q. Liu, C. G. Liu, Fe-doped Mn3O4 spinel nanoparticles with highly exposed Feoct-O-Mntet sites for efficient selective catalytic reduction (SCR) of NO with ammonia at low temperatures, ACS Catal. 10 (2020) 6803-6809 [27] J. Lee, S.Y. Kwak, Mn-doped maghemite (γ-Fe2O3) from metal-organic framework accompanying redox reaction in a bimetallic system:The structural phase transitions and catalytic activity toward NOx removal, ACS Omega 3 (3) (2018) 2634-2640 [28] S. Naeimi, H. Faghihian, Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid:For removal of pharmaceutical pollutant, doxycycline from aqueous solutions, Environ Toxicol Pharmacol 53 (2017) 121-132 [29] Thi Cam Nguyen D., Thi Ngoc le H., van Tran T., Thi Kim Nguyen O., Duy Nguyen T., Trung Sy D., Vo D.V.N., Duc Lam T., Giang Bach L., van Thuan D., A simple route for the synthesis of Fe/C composite derived from the metal-organic framework MIL-53 (Fe), Mater. Today:Proc. 18 (2019) 2422-2429 [30] W.X. Guo, W.W. Sun, L.P. Lv, S.F. Kong, Y. Wang, Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage, ACS Nano 11 (4) (2017) 4198-4205 [31] P. Tan, Y. Jiang, X.Q. Liu, D.Y. Zhang, L.B. Sun, Magnetically responsive core-shell Fe3O4@C adsorbents for efficient capture of aromatic sulfur and nitrogen compounds, ACS Sustain. Chem. Eng. 4 (4) (2016) 2223-2231 [32] X.J. Yao, Y. Xiong, W.X. Zou, L. Zhang, S.G. Wu, X. Dong, F. Gao, Y. Deng, C.J. Tang, Z. Chen, L. Dong, Y. Chen, Correlation between the physicochemical properties and catalytic performances of CexSn1-xO2 mixed oxides for NO reduction by CO, Appl. Catal. B:Environ. 144 (2014) 152-165 [33] P. Tan, X.Y. Xie, X.Q. Liu, T. Pan, C. Gu, P.F. Chen, J.Y. Zhou, Y.C. Pan, L.B. Sun, Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation, J Hazard Mater 321 (2017) 344-352 [34] S.W. Zhang, Q.H. Fan, H.H. Gao, Y.S. Huang, X. Liu, J.X. Li, X.J. Xu, X.K. Wang, Formation of Fe3O4@MnO2 ball-in-ball hollow spheres as a high performance catalyst with enhanced catalytic performances, J. Mater. Chem. A 4 (4) (2016) 1414-1422 [35] J. Sun, S.B. Zhou, P. Hou, Y. Yang, J. Weng, X.H. Li, M.Y. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles, J Biomed Mater Res A 80 (2) (2007) 333-341 [36] C.S. Deng, J.N. Qian, C.X. Yu, Y.N. Yi, P. Zhang, W. Li, L.H. Dong, B. Li, M.G. Fan, Influences of doping and thermal stability on the catalytic performance of CuO/Ce20M1Ox (M=Zr, Cr, Mn, Fe, Co, Sn) catalysts for NO reduction by CO, RSC Adv. 6 (114) (2016) 113630-113647 [37] S.J. Wang, Z.Z. Li, F.H. Duan, B. Hu, L.H. He, M.H. Wang, N. Zhou, Q.J. Jia, Z.H. Zhang, Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon:Label-free aptasensor for ultrasensitive tobramycin detection, Anal Chim Acta 1047 (2019) 150-162 [38] Y.H. Wu, H. Liu, G.Y. Li, L.J. Jin, X. Li, X.M. Ou, L.H. Dong, G.Z. Jin, B. Li, Tuning composition on B sites of LaM0.5Mn0.5O3 (M=Cu, Co, Fe, Ni, Cr) perovskite catalysts in NOx efficient reduction, Appl. Surf. Sci. 508 (2020) 145158 [39] Y.L. Zhang, C.W. Jia, Q.Y. Wang, Q. Kong, G. Chen, H.T. Guan, C.J. Dong, Highly sensitive and selective toluene sensor of bimetallic Ni/Fe-MOFs derived porous NiFe2O4 nanorods, Ind. Eng. Chem. Res. 58 (22) (2019) 9450-9457 [40] A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal. 36 (12) (2004) 1564-1574 [41] K.W. Zha, S.X. Cai, H. Hu, H.R. Li, T.T. Yan, L.Y. Shi, D.S. Zhang, In situ DRIFTs investigation of promotional effects of tungsten on MnOx-CeO2/meso-TiO2 catalysts for NOx reduction, J. Phys. Chem. C 121 (45) (2017) 25243-25254 [42] J. Liu, X.Y. Li, R.Y. Li, Q.D. Zhao, J. Ke, H.N. Xiao, L.D. Wang, S.M. Liu, M. Tadé, S.B. Wang, Facile synthesis of tube-shaped Mn-Ni-Ti solid solution and preferable Langmuir-Hinshelwood mechanism for selective catalytic reduction of NOx by NH3, Appl. Catal. A:Gen. 549 (2018) 289-301 [43] X.D. Zhang, Y. Yang, L. Song, Y.X. Wang, C. He, Z. Wang, L.F. Cui, High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation, Mol. Catal. 447 (2018) 80-89 [44] Y.H. Wu, G.Y. Li, B.X. Chu, L.H. Dong, Z.F. Tong, H.X. He, L.L. Zhang, M.G. Fan, B. Li, L. Dong, NO reduction by CO over highly active and stable perovskite oxide catalysts La0.8Ce0.2M0.25Co0.75O3 (M=Cu, mn, Fe):Effect of the role in B site, Ind. Eng. Chem. Res. 57 (46) (2018) 15670-15682 [45] C.S. Deng, B. Li, L.H. Dong, F.Y. Zhang, M.G. Fan, G.Z. Jin, J.B. Gao, L.W. Gao, F. Zhang, X.P. Zhou, NO reduction by CO over CuO supported on CeO2-doped TiO2:The effect of the amount of a few CeO2, Phys Chem Chem Phys 17 (24) (2015) 16092-16109 [46] L.J. Liu, Z.J. Yao, Y. Deng, F. Gao, B. Liu, L. Dong, Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO, ChemCatChem 3 (6) (2011) 978-989 [47] X.Y. Hou, J.N. Qian, L.L. Li, F. Wang, B. Li, F.L. He, M.G. Fan, Z.F. Tong, L.H. Dong, L. Dong, Preparation and investigation of iron-cerium oxide compounds for NOx reduction, Ind. Eng. Chem. Res. 57 (49) (2018) 16675-16683 [48] Z.Y. Guo, L.H. Song, T.T. Xu, D.W. Gao, C.C. Li, X. Hu, G.Z. Chen, CeO2-CuO bimetal oxides derived from Ce-based MOF and their difference in catalytic activities for CO oxidation, Mater. Chem. Phys. 226 (2019) 338-343 [49] T. Boningari, S.M. Pavani, P.R. Ettireddy, S.S.C. Chuang, P.G. Smirniotis, Mechanistic investigations on NO reduction with CO over Mn/TiO2 catalyst at low temperatures, Mol. Catal. 451 (2018) 33-42 [50] L.J. Liu, B. Liu, L.H. Dong, J. Zhu, H.Q. Wan, K.Q. Sun, B. Zhao, H.Y. Zhu, L. Dong, Y. Chen, In situ FT-infrared investigation of CO or/and NO interaction with CuO/Ce0.67Zr0.33O2 catalysts, Appl. Catal. B:Environ. 90 (3-4) (2009) 578-586 [51] X.J. Yao, Q. Yu, Z.Y. Ji, Y. Lv, Y. Cao, C.J. Tang, F. Gao, L. Dong, Y. Chen, A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2 (M=Zr4+, Sn4+, Ti4+) catalysts for NO + CO reaction, Appl. Catal. B:Environ. 130-131 (2013) 293-304 [52] R.J. Baxter, P. Hu, Insight into why the Langmuir-Hinshelwood mechanism is generally preferred, J. Chem. Phys. 116 (11) (2002) 4379-4381 |