[1] C. Minelli, S.B. Lowe, M.M. Stevens, Engineering nanocomposite materials for cancer therapy, Small 6 (21) (2010) 2336–2357 [2] D. Wang, J.F. Chen, L.M. Dai, Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals, Part. Part. Syst. Charact. 32 (5) (2015) 515–523 [3] A. Konwar, D. Chowdhury, Property relationship of alginate and alginate–carbon dot nanocomposites with bivalent and trivalent cross-linker ions, RSC Adv. 5 (77) (2015) 62864–62870 [4] C.J. Jeong, A.K. Roy, S.H. Kim, J.E. Lee, J.H. Jeong, I. In, S.Y. Park, Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes, Nanoscale 6 (24) (2014) 15196–15202 [5] W. Hyung, H. Ko, J. Park, E. Lim, S.B. Park, Y.J. Park, H.G. Yoon, J.S. Suh, S. Haam, Y.M. Huh, Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment, Biotechnol Bioeng 99 (2) (2008) 442–454 [6] G.M. Son, H.Y. Kim, J.H. Ryu, C.W. Chu, D.H. Kang, S.B. Park, Y.I. Jeong, Self-assembled polymeric micelles based on hyaluronic acid-g-poly(D, L-lactide-co-glycolide) copolymer for tumor targeting, Int J Mol Sci 15 (9) (2014) 16057–16068 [7] M. Yazan, I.D. Kocyigit, F. Atil, U. Tekin, Z.B. Gonen, M.E. Onder, Effect of hyaluronic acid on the osseointegration of dental implants, Br J Oral Maxillofac Surg 57 (1) (2019) 53–57 [8] Fakhari A, Berkland C, Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment, Acta Biomater 9 (7) (2013) 7081–7092 [9] G. Jose, Y.J. Lu, H.A. Chen, H.L. Hsu, J.T. Hung, T.S. Anilkumar, J.P. Chen, Hyaluronic acid modified bubble-generating magnetic liposomes for targeted delivery of doxorubicin, J. Magn. Magn. Mater. 474 (2019) 355–364 [10] J.P. Quinones, J. Jokinen, S. Kein?nen, C.P. Covas, O. Brüggemann, D. Ossipov, Self-assembled hyaluronic acid-testosterone nanocarriers for delivery of anticancer drugs, Eur. Polym. J. 99 (2018) 384–393 [11] W.Y. Gui, J.R. Zhang, X.Q. Chen, D.H. Yu, Q. Ma, N-Doped graphene quantum dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery, Mikrochim Acta 185 (1) (2017) 66 [12] Z. Zyman, M. Epple, A. Goncharenko, D. Rokhmistrov, O. Prymak, K. Loza, Thermally induced crystallization and phase evolution in powders derived from amorphous calcium phosphate precipitates with a Ca/P ratio of 1: 1, J. Cryst. Growth 450 (2016) 190–196 [13] Q.Z. Chen, C.T. Wong, W.W. Lu, K.M. Cheung, J.C. Leong, K.D. Luk, Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo, Biomaterials 25 (18) (2004) 4243–4254 [14] N. Rangavittal, A.R. Landa-Cánovas, J.M. González-Calbet, M. Vallet-Regí, Structural study and stability of hydroxyapatite and beta-tricalcium phosphate: Two important bioceramics. Journal of Biomedical Materials Research 51(4) (2015) 660–668 [15] C. Qi, Y.J. Zhu, B.Q. Lu, X.Y. Zhao, J. Zhao, F. Chen, Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption, J. Mater. Chem. 22 (42) (2012) 22642 [16] M.P. Ginebra, T. Traykova, J.A. Planell, Calcium phosphate cements as bone drug delivery systems: A review, J Control Release 113 (2) (2006) 102–110 [17] X.Y. Zhao, Y.J. Zhu, F. Chen, B.Q. Lu, J. Wu, Nanosheet-assembled hierarchical nanostructures of hydroxyapatite: Surfactant-free microwave-hydrothermal rapid synthesis, protein/DNA adsorption and pH-controlled release, CrystEngComm 15 (1) (2013) 206–212 [18] F. Chen, P. Huang, C. Qi, B.Q. Lu, X.Y. Zhao, C. Li, J. Wu, D.X. Cui, Y.J. Zhu, Multifunctional biodegradable mesoporous microspheres of Eu3+-doped amorphous calcium phosphate: Microwave-assisted preparation, pH-sensitive drug release, and bioimaging application, J Mater Chem B 2 (41) (2014) 7132–7140 [19] X. Guo, W.F. Li, H.P. Wang, Y.Y. Fan, H.F. Wang, X.H. Gao, B.L. Niu, X.C. Gong, Preparation, characterization, release and antioxidant activity of curcumin-loaded amorphous calcium phosphate nanoparticles, J. Non - Cryst. Solids 500 (2018) 317–325 [20] L. Chen, H.L. Zhu, S. Yang, B.B. Zhou, F.H. You, X.M. Yan, Nanostructured calcium phosphate carriers for deliver of poor water-soluble drug silybin, Mater. Lett. 143 (2015) 252–255 [21] Y.Q. Zhang, Y.S. Hu, J. Lin, Y. Fan, Y.T. Li, Y. Lv, X.Y. Liu, Excitation wavelength independence: Toward low-threshold amplified spontaneous emission from carbon nanodots, ACS Appl Mater Interfaces 8 (38) (2016) 25454–25460 [22] C. Saikia, M.K. Das, A. Ramteke, T.K. Maji, Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles, Int J Biol Macromol 93 (Pt A) (2016) 1121–1132 [23] M.D. Massich, D.A. Giljohann, A.L. Schmucker, P.C. Patel, C.A. Mirkin, Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates, ACS Nano 4 (10) (2010) 5641–5646 [24] G.J. Ding, Y.J. Zhu, C. Qi, B.Q. Lu, J. Wu, F. Chen, Porous microspheres of amorphous calcium phosphate: Block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery, J Colloid Interface Sci 443 (2015) 72–79 [25] D. Pasqui, P. Torricelli, M. De Cagna, M. Fini, R. Barbucci, Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications, J Biomed Mater Res A 102 (5) (2014) 1568–1579 [26] C. Qi, Y.J. Zhu, X.Y. Zhao, J. Zhao, F. Chen, G.F. Cheng, Y.J. Ruan, High surface area carbonate apatite nanorod bundles: Surfactant-free sonochemical synthesis and drug loading and release properties, Mater. Res. Bull. 48 (4) (2013) 1536–1540 [27] I.R. Gibson, W. Bonfield, Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite, J. Biomed. Mater. Res. 59 (4) (2002) 697–708 [28] B.J.M. Leite Ferreira, M.C.F. Magalh?es, R.N. Correia, In vitro formation of apatites and other biologically related calcium phosphates: Influence of temperature and pH on the nature of the mineral phases, Mater. Sci. Forum 587-588 (2008) 7–11 |