[1] N. Yang, W. Wang, W. Ge, J.H. Li, Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow, China Particuology 1 (1) (2003) 38-41 [2] N. Yang, W. Wang, W. Ge, J.H. Li, Analysis of flow structure and calculation of drag coefficient for concurrent-up gas-solid flow, Chin. J. Chem. Eng. 11 (1) (2003) 79-84 [3] J.F. Davidson, Circulating fluidised bed hydrodynamics, Powder Technol. 113 (3) (2000) 249-260 [4] J. Yerushalmi, D.H. Turner, A.M. Squires, The fast fluidized bed, Ind. Eng. Chem. Proc. Des. Dev. 15 (1) (1976) 47-53 [5] J.W.A. de Swart, R. Krishna, Simulation of the transient and steady state behaviour of a bubble column slurry reactor for Fischer-Tropsch synthesis, Chem. Eng. Process. Process. Intensif. 41 (1) (2002) 35-47 [6] J.H. Li, Z.D. Zhang, W. Ge, Q.C. Sun, J. Yuan, A simple variational criterion for turbulent flow in pipe, Chem. Eng. Sci. 54 (8) (1999) 1151-1154 [7] J.H. Li, W.L. Huang, From multiscale to mesoscience:Addressing mesoscales in mesoregimes of different levels, Annu. Rev. Chem. Biomol. Eng. 9 (2018) 41-60 [8] J.H. Li, W. Ge, W. Wang, N. Yang, W.L. Huang, Focusing on mesoscales:From the energy-minimization multiscale model to mesoscience, Curr. Opin. Chem. Eng. 13 (2016) 10-23 [9] J.H. Li, M. Kwauk, Particle-Fluid Two-Phase Flow:The Energy-Minimization Multi-Scale Method, Metallurgical Industry Press, Beijing, 1994 [10] J.H. Li, Multi-scale modeling and method of energy minimization for particle-fluid two phase flow, Ph.D. Thesis. Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing, 1987. (in Chinese) [11] J.H. Chen, N. Yang, W. Ge, J.H. Li, Stability-driven structure evolution:Exploring the intrinsic similarity between gas-solid and gas-liquid systems, Chin. J. Chem. Eng. 20 (1) (2012) 167-177 [12] W. Ge, W. Wang, N. Yang, J.H. Li, M. Kwauk, F.G. Chen, J.H. Chen, X.J. Fang, L. Guo, X.F. He, X.H. Liu, Y.N. Liu, B.N. Lu, J. Wang, J.W. Wang, L.M. Wang, X.W. Wang, Q.G. Xiong, G.Z. Zhou, Meso-scale oriented simulation towards virtual process engineering (VPE)-The EMMS paradigm, Chem. Eng. Sci. 66 (19) (2011) 4426-4458 [13] N. Yang, J.H. Chen, W. Ge, J.H. Li, A conceptual model for analyzing the stability condition and regime transition in bubble columns, Chem. Eng. Sci. 65 (1) (2010) 517-526 [14] N. Yang, J.H. Chen, H. Zhao, W. Ge, J.H. Li, Explorations on the multi-scale flow structure and stability condition in bubble columns, Chem. Eng. Sci. 62 (24) (2007) 6978-6991 [15] H. Zhao, Multi-scale modeling of gas-liquid (slurry) reactors, Ph.D. Thesis. Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 2006. (in Chinese) [16] Y. Li, Y.F. Mu, S. Yuan, L. Guo, The game theoretical approach for multi-phase complex systems in chemical engineering, J. Syst. Sci. Complex. 30 (1) (2017) 4-19 [17] S. Yuan, Y.F. Mu, X.P. Guan, Z.X. Liu, J.H. Chen, N. Yang, L. Zhang, Game-theoretical explorations of the mesoscale flow structure and regime transitions in bubble columns, Particuology 48 (2020) 100-108 [18] W. Ge, J.H. Li, Physical mapping of fluidization regimes-The EMMS approach, Chem. Eng. Sci. 57 (18) (2002) 3993-4004 [19] J.H. Li, L.X. Wen, W. Ge, H.P. Cui, J.Q. Ren, Dissipative structure in concurrent-up gas-solid flow, Chem. Eng. Sci. 53 (19) (1998) 3367-3379 [20] C. Han, J.H. Chen, Mesoregime-oriented investigation of flow regime transition in bubble columns, Ind. Eng. Chem. Res. 58 (31) (2019) 14424-14435 [21] W. Ge, F.G. Chen, J. Gao, S.Q. Gao, J. Huang, X.X. Liu, Y. Ren, Q.C. Sun, L.M. Wang, W. Wang, N. Yang, J.Y. Zhang, H. Zhao, G.Z. Zhou, J.H. Li, Analytical multi-scale method for multi-phase complex systems in process engineering-Bridging reductionism and holism, Chem. Eng. Sci. 62 (13) (2007) 3346-3377 [22] M.J. Du, S.W. Hu, J.H. Chen, X.H. Liu, W. Ge, Extremum characteristics of energy consumption in fluidization analyzed by using EMMS, Chem. Eng. J. 342 (2018) 386-394 [23] X.P. Guan, N. Yang, Modeling of co-current and counter-current bubble columns with an extended EMMS approach, Particuology 44 (2019) 126-135 [24] H.A. Luo, H.F. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions, AIChE J. 42 (5) (1996) 1225-1233 [25] Y.H. Wang, Q. Xiao, N. Yang, J.H. Li, In-depth exploration of the dual-bubble-size model for bubble columns, Ind. Eng. Chem. Res. 51 (4) (2012) 2077-2083 [26] N. Yang, Z.Y. Wu, J.H. Chen, Y.H. Wang, J.H. Li, Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns, Chem. Eng. Sci. 66 (14) (2011) 3212-3222 [27] X.D. Jiang, N. Yang, B.L. Yang, Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor, Particuology 27 (2016) 95-101 [28] Q. Xiao, N. Yang, J.H. Li, Stability-constrained multi-fluid CFD models for gas-liquid flow in bubble columns, Chem. Eng. Sci. 100 (2013) 279-292 [29] X.P. Guan, N. Yang, CFD simulation of bubble column hydrodynamics with a novel drag model based on EMMS approach, Chem. Eng. Sci. 243 (2021) 116758 [30] T.C. Koopmans, Activity Analysis of Production and Allocation, John Wiley, New York, 1951 [31] Y. Mo, M.J. Du, W. Ge, P.W. Zhang, Analysis of the energy-minimization multiscale model with multiobjective optimization, Particuology 48 (2020) 109-115 [32] J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1955 [33] D. Fudenberg, J. Tirole, Game Theory, MIT Press, Cambridge, Massachusetts, 1991 [34] J.H. Chen, N. Yang, W. Ge, J.H. Li, Modeling of regime transition in bubble columns with stability condition, Ind. Eng. Chem. Res. 48 (1) (2009) 290-301 [35] R.F. Mudde, W.K. Harteveld, H.E.A. van den Akker, Uniform flow in bubble columns, Ind. Eng. Chem. Res. 48 (1) (2009) 148-158 [36] E. Camarasa, C. Vial, S. Poncin, G. Wild, N. Midoux, J. Bouillard, Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column, Chem. Eng. Process. Process. Intensif. 38 (4-6) (1999) 329-344 |