[1] R. Krishna, S.T. Sie, Design and scale-up of the Fischer-Tropsch bubble column slurry reactor, Fuel Process. Technol. 64(1-3) (2000) 73-105. [2] Y.X. Wu, D. Gidaspow, Hydrodynamic simulation of methanol synthesis in gasliquid slurry bubble column reactors, Chem. Eng. Sci. 55(3) (2000) 573-587. [3] D. Gidaspow, Y.T. He, V. Chandra, A new slurry bubble column reactor for diesel fuel, Chem. Eng. Sci. 134(2015) 784-799. [4] Y.J. Liu, Z.J. Zuo, C. Li, X. Deng, W. Huang, Effect of preparation method on CuZnAl catalysts for ethanol synthesis from syngas, Appl. Surf. Sci. 356(2015) 124-127. [5] A. Ali, C. Zhao, Direct liquefaction techniques on lignite coal:A review, Chin. J. Catal. 41(3) (2020) 375-389. [6] C.I. Méndez, J. Ancheyta, Kinetic models for Fischer-Tropsch synthesis for the production of clean fuels, Catal. Today 353(2020) 3-16. [7] X.B. Zhang, Z. Li, Q.H. Guo, H.Y. Zheng, K.C. Xie, Selective synthesis of mixed alcohols from syngas over catalyst Fe2O3/Al2O3 in slurry reactor, Fuel Process. Technol. 91(4) (2010) 379-382. [8] C.I. Méndez, J. Ancheyta, Modeling and control of a Fischer-Tropsch synthesis fixed-bed reactor with a novel mechanistic kinetic approach, Chem. Eng. J. 390(2020) 124489. [9] G.W. Roberts, M.A. Márquez, M.S. McCutchen, Alcohol synthesis in a hightemperature slurry reactor, Catal. Today 36(3) (1997) 255-263. [10] X.H. Wang, Y. Lv, Y.F. Bu, F.B. Zhang, Y.L. Li, Z.W. Men, A gas-solid fluidized bed reactor for activating the iron-based Fischer-Tropsch synthesis catalyst, Chem. Eng. J. 386(2020) 122066. [11] T.F. Wang, J.F. Wang, Y. Jin, Slurry reactors for gas-to-liquid processes:A review, Ind. Eng. Chem. Res. 46(18) (2007) 5824-5847. [12] J. Lefebvre, N. Trudel, S. Bajohr, T. Kolb, A study on three-phase CO2 methanation reaction kinetics in a continuous stirred-tank slurry reactor, Fuel 217(2018) 151-159. [13] K.N. Sun, X.X. Ma, Q.C. Yang, R. Qiu, R.J. Hou, Upgrading Siberian (Russia) crude oil by hydrodesulfurization in a slurry reactor:A kinetic study, Chin. J. Chem. Eng. 28(12) (2020) 3027-3034. [14] J.L. Tao, J.G. Huang, S.J. Geng, F. Gao, T.B. He, Q.S. Huang, Experimental investigation of hydrodynamics and mass transfer in a slurry multistage internal airlift loop reactor, Chem. Eng. J. 386(2020) 122769. [15] E.M. Lakhdissi, A. Fallahi, C. Guy, J. Chaouki, Effect of solid particles on the volumetric gas liquid mass transfer coefficient in slurry bubble column reactors, Chem. Eng. Sci. 227(2020) 115912. [16] Z.H. Deng, T.F. Wang, Z.W. Wang, Hydrodesulfurization of diesel in a slurry reactor, Chem. Eng. Sci. 65(1) (2010) 480-486. [17] H. Bai, M.M. Ma, B. Bai, J.P. Zuo, H.J. Cao, L. Zhang, Q.F. Zhang, V.A. Vinokurov, W. Huang, The active site of syngas conversion into ethanol over Cu/ZnO/Al2O3 ternary catalysts in slurry bed, J. Catal. 380(2019) 68-82. [18] A. Shaikh, M.H. Al-Dahhan, A review on flow regime transition in bubble columns, Int. J. Chem. React. Eng. 5(1) (2007) 1-68. [19] S. Orvalho, M. Hashida, M. Zednikova, P. Stanovsky, M.C. Ruzicka, S. Sasaki, A. Tomiyama, Flow regimes in slurry bubble column:Effect of column height and particle concentration, Chem. Eng. J. 351(2018) 799-815. [20] A.K. Jhawar, A. Prakash, Heat transfer in a slurry bubble column reactor:A critical overview, Ind. Eng. Chem. Res. 51(4) (2012) 1464-1473. [21] R.F. Mudde, Gravity-driven bubbly flows, Annu. Rev. Fluid Mech. 37(1) (2005) 393-423. [22] D. Matonis, D. Gidaspow, M. Bahary, CFD simulation of flow and turbulence in a slurry bubble column, AIChE J. 48(7) (2002) 1413-1429. [23] I.K. Gamwo, J.S. Halow, D. Gidaspow, R. Mostofi, CFD models for methanol synthesis three-phase reactors:Reactor optimization, Chem. Eng. J. 93(2) (2003) 103-112. [24] M.T. Dhotre, J.B. Joshi, Two-dimensional CFD model for the prediction of flow pattern, pressure drop and heat transfer coefficient in bubble column reactors, Chem. Eng. Res. Des. 82(6) (2004) 689-707. [25] A.A. Troshko, F. Zdravistch, CFD modeling of slurry bubble column reactors for Fisher-Tropsch synthesis, Chem. Eng. Sci. 64(5) (2009) 892-903. [26] S. Rabha, M. Schubert, U. Hampel, Intrinsic flow behavior in a slurry bubble column:a study on the effect of particle size, Chem. Eng. Sci. 93(2013) 401-411. [27] M. An, X.P. Guan, N. Yang, Modeling the effects of solid particles in CFD-PBM simulation of slurry bubble columns, Chem. Eng. Sci. 223(2020) 115743. [28] N.N. Qi, H. Zhang, B. Jin, K. Zhang, CFD modelling of hydrodynamics and degradation kinetics in an annular slurry photocatalytic reactor for wastewater treatment, Chem. Eng. J. 172(1) (2011) 84-95. [29] Y. Boyjoo, M. Ang, V. Pareek, CFD simulation of a pilot scale slurry photocatalytic reactor and design of multiple-lamp reactors, Chem. Eng. Sci. 111(2014) 266-277. [30] W. Su, X.G. Shi, Y.Y. Wu, J.S. Gao, X.Y. Lan, Simulation on the effect of particle on flow hydrodynamics in a slurry bed, Powder Technol. 361(2020) 1006-1020. [31] K.C. Ruthiya, V.P. Chilekar, M.J.F. Warnier, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, J.R. van Ommen, Detecting regime transitions in slurry bubble columns using pressure time series, AIChE J. 51(7) (2005) 1951-1965. [32] M.C. Ruzicka, J. Zahradnik, J. Drahoš, N.H. Thomas, Homogeneousheterogeneous regime transition in bubble columns, Chem. Eng. Sci. 56(15) (2001) 4609-4626. [33] D. Lucas, T. Ziegenhein, Influence of the bubble size distribution on the bubble column flow regime, Int. J. Multiph. Flow 120(2019) 103092. [34] O.N. Manjrekar, M.P. Dudukovic, Identification of flow regime in a bubble column reactor with a combination of optical probe data and machine learning technique, Chem. Eng. Sci.:X 2(2019) 100023. [35] K. Zhang, N.N. Qi, J.Q. Jin, C.X. Lu, H. Zhang, Gas holdup and bubble dynamics in a three-phase internal loop reactor with external slurry circulation, Fuel 89(7) (2010) 1361-1369. [36] A. Behkish, R. Lemoine, L. Sehabiague, R. Oukaci, B.I. Morsi, Gas holdup and bubble size behavior in a large-scale slurry bubble column reactor operating with an organic liquid under elevated pressures and temperatures, Chem. Eng. J. 128(2-3) (2007) 69-84. [37] M. Götz, J. Lefebvre, F. Mörs, F. Ortloff, R. Reimert, S. Bajohr, T. Kolb, Novel gas holdup correlation for slurry bubble column reactors operated in the homogeneous regime, Chem. Eng. J. 308(2017) 1209-1224. [38] M.W. Abdulrahman, Experimental studies of gas holdup in a slurry bubble column at high gas temperature of a helium water alumina system, Chem. Eng. Res. Des. 109(2016) 486-494. [39] D. Li, K. Guo, J.N. Li, Y.P. Huang, J.C. Zhou, H. Liu, C.J. Liu, Hydrodynamics and bubble behaviour in a three-phase two-stage internal loop airlift reactor, Chin. J. Chem. Eng. 26(6) (2018) 1359-1369. [40] A.H. Syed, M. Boulet, T. Melchiori, J.M. Lavoie, CFD simulation of a slurry bubble column:Effect of population balance kernels, Comput. Fluids 175(2018) 167-179. [41] M.V. Tabib, S.A. Roy, J.B. Joshi, CFD simulation of bubble column-An analysis of interphase forces and turbulence models, Chem. Eng. J. 139(3) (2008) 589-614. [42] M. Pourtousi, J.N. Sahu, P. Ganesan, Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column, Chem. Eng. Process.:Process. Intensif. 75(2014) 38-47. [43] R.T. Zhou, N. Yang, J.H. Li, CFD simulation of gas-liquid-solid flow in slurry bubble columns with EMMS drag model, Powder Technol. 314(2017) 466-479. [44] N. Kantarci, K.O. Ulgen, F. Borak, A study on hydrodynamics and heat transfer in a bubble column reactor with yeast and bacterial cell suspensions, Can. J. Chem. Eng. 83(4) (2008) 764-773. [45] M.W. Abdulrahman, CFD simulations of direct contact volumetric heat transfer coefficient in a slurry bubble column at a high gas temperature of a heliumwater-alumina system, Appl. Therm. Eng. 99(2016) 224-234. [46] S.J. Geng, Z. Li, H.Y. Liu, C. Yang, F. Gao, T.B. He, Q.S. Huang, Hydrodynamics and mass transfer in a slurry external airlift loop reactor integrating mixing and separation, Chem. Eng. Sci. 211(2020) 115294. [47] T. Yang, S.J. Geng, C. Yang, Q.S. Huang, Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification, Chem. Eng. Sci. 184(2018) 126-133. [48] S. Nedeltchev, Theoretical prediction of mass transfer coefficients in both gasliquid and slurry bubble columns, Chem. Eng. Sci. 157(2017) 169-181. [49] J. Wang, B.Q. Deng, J. Gao, H.C. Cao, Numerical simulation of radiation distribution in a slurry reactor:The effect of distribution of catalyst particles, Chem. Eng. J. 357(2019) 169-179. [50] M. Tabatabaei, M. Aghbashlo, M. Dehhaghi, H.K.S. Panahi, A. Mollahosseini, M. Hosseini, M.M. Soufiyan, Reactor technologies for biodiesel production and processing:A review, Prog. Energy Combust. Sci. 74(2019) 239-303. [51] D.S. Wang, Y.S. Tan, Y.Z. Han, T. Noritatsu, Study on deactivation of hybrid catalyst for dimethyl ether synthesis in slurry reactor, J. Fuel Chem. Technol. 36(2) (2008) 171-175. [52] S. Riaz, S.J. Park, An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments, J. Ind. Eng. Chem. 84(2020) 23-41. [53] W.J. Meng, J.W. Li, B.H. Chen, H.B. Li, Modeling and simulation of ethylene polymerization in industrial slurry reactor series, Chin. J. Chem. Eng. 21(8) (2013) 850-859. [54] K.J. Woo, S.H. Kang, S.M. Kim, J.W. Bae, K.W. Jun, Performance of a slurry bubble column reactor for Fischer-Tropsch synthesis:Determination of optimum condition, Fuel Process. Technol. 91(4) (2010) 434-439. [55] G. Bellussi, G. Rispoli, A. Landoni, R. Millini, D. Molinari, E. Montanari, D. Moscotti, P. Pollesel, Hydroconversion of heavy residues in slurry reactors:Developments and perspectives, J. Catal. 308(2013) 189-200. [56] X.P. Li, C.H. Li, Study on hydrolysis of high-concentration COS in slurry bed system, Adv. Fine Petrochem. 8(2007) 26-28. (in Chinese) [57] K. Salehi, S.M. Jokar, J. Shariati, M. Bahmani, M.A. Sedghamiz, M.R. Rahimpour, Enhancement of CO conversion in a novel slurry bubble column reactor for methanol synthesis, J. Nat. Gas Sci. Eng. 21(2014) 170-183. [58] Q.M. Zhang, Q.K. Pan, J. Guan, D.M. He, S.C. Zhao, Synthesis of terephthalic acid by isomerization of coal acid in slurry reactor, J. Fuel Chem. Technol. 36(2008) 139-143. (in Chinese) [59] L. Li, W.H. Lian, B. Bai, Y.S. Zhao, P. Li, Q. Zhang, W. Huang, CFD-PBM investigation of the hydrodynamics in a slurry bubble column reactor with a circular gas distributor and heat exchanger tube, Chem. Eng. Sci.:X 9(2021) 100087. [60] C. Hulet, P. Clement, P. Tochon, D. Schweich, N. Dromard, J. Anfray, Literature review on heat transfer in two- and three-phase bubble columns, Int. J. Chem. React. Eng. 7(1) (2009) 1-94. [61] F. Schillinger, S. Maurer, E.C. Wagner, J.R. van Ommen, R.F. Mudde, T.J. Schildhauer, Influence of vertical heat exchanger tubes, their arrangement and the column diameter on the hydrodynamics in a gas-solid bubbling fluidized bed, Int. J. Multiph. Flow 97(2017) 46-59. [62] O.M. Basha, L. Sehabiague, A. Abdel-Wahab, B.I. Morsi, Fischer-Tropsch synthesis in slurry bubble column reactors:Experimental investigations and modeling-A review, Int. J. Chem. React. Eng. 13(3) (2015) 201-288. [63] J.W. Chen, F. Li, S. Degaleesan, P. Gupta, M.H. Al-Dahhan, M.P. Dudukovic, B.A. Toseland, Fluid dynamic parameters in bubble columns with internals, Chem. Eng. Sci. 54(13-14) (1999) 2187-2197. [64] Y. Zhang, J. Lu, L. Wang, Studies on hydrodynamics of turbulent slurry bubble column (III) Effect of vertical pipe bundles, J. Chem. Ind. Eng. Soc. of Chin. 60(2009) 1135-1140. (in Chinese) [65] A. Forret, J.M. Schweitzer, T. Gauthier, R. Krishna, D. Schweich, Liquid dispersion in large diameter bubble columns, with and without internals, Can. J. Chem. Eng. 81(3-4) (2008) 360-366. [66] A.A. Youssef, M.H. Al-Dahhan, Impact of internals on the gas holdup and bubble properties of a bubble column, Ind. Eng. Chem. Res. 48(17) (2009) 8007-8013. [67] A.A. Youssef, M.E. Hamed, J.T. Grimes, M.H. Al-Dahhan, M.P. Dudukovic ′, Hydrodynamics of pilot-scale bubble columns:Effect of internals, Ind. Eng. Chem. Res. 52(1) (2013) 43-55. [68] M.K. Al Mesfer, A.J. Sultan, M.H. Al-Dahhan, Impacts of dense heat exchanging internals on gas holdup cross-sectional distributions and profiles of bubble column using gamma ray Computed Tomography (CT) for FT synthesis, Chem. Eng. J. 300(2016) 317-333. [69] A.J. Sultan, L.S. Sabri, M.H. Al-Dahhan, Impact of heat-exchanging tube configurations on the gas holdup distribution in bubble columns using gamma-ray computed tomography, Int. J. Multiph. Flow 106(2018) 202-219. [70] F. Larachi, D. Desvigne, L. Donnat, D. Schweich, Simulating the effects of liquid circulation in bubble columns with internals, Chem. Eng. Sci. 61(13) (2006) 4195-4206. [71] X.F. Guo, C.X. Chen, Simulating the impacts of internals on gas-liquid hydrodynamics of bubble column, Chem. Eng. Sci. 174(2017) 311-325. [72] M. Kagumba, M.H. Al-Dahhan, Impact of internals size and configuration on bubble dynamics in bubble columns for alternative clean fuels production, Ind. Eng. Chem. Res. 54(4) (2015) 1359-1372. [73] A.K. Pradhan, R.K. Parichha, P. De, Gas hold-up in non-Newtonian solutions in a bubble column with internals, Can. J. Chem. Eng. 71(3) (1993) 468-471. [74] V. Balamurugan, D. Subbarao, S. Roy, Enhancement in gas holdup in bubble columns through use of vibrating internals, Can. J. Chem. Eng. 88(6) (2010) 1010-1020. [75] S.C. Saxena, N.S. Rao, A.C. Saxena, Heat-transfer and gas-holdup studies in a bubble column:Air-water-glass bead system, Chem. Eng. Commun. 96(1) (1990) 31-55. [76] S. Schlüter, A. Steiff, P.M. Weinspach, Heat transfer in two- and three-phase bubble column reactors with internals, Chem. Eng. Process.:Process. Intensif. 34(3) (1995) 157-172. [77] R.S. Abdulmohsin, M.H. Al-Dahhan, Impact of internals on the heat-transfer coefficient in a bubble column, Ind. Eng. Chem. Res. 51(7) (2012) 2874-2881. [78] C. Wu, Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy Ph.D. Thesis, Washington University, USA, 2007. [79] J.R. Fair, A.J. Lambright, J.W. Andersen, Heat transfer and gas holdup in a sparged contactor, Ind. Eng. Chem. Process. Des. Dev. 1(1) (1962) 33-36. [80] A.N. Khoze, Heat transfer in a dynamic two-phase bed at reduced pressures, J. Appl. Mech. Tech. Phys. 12(5) (1971) 782-785. [81] L.S. Aksel'rod, N.L. Vorotnikova, A.A. Kozlov, Heat transfer and several aspects of hydrodynamics of bubble beds on sieve trays equipped with tube bundles, Heat Transferlsov. Res. 8(1976) 25-33. [82] H. Korte, Heat transfer in bubble columns with and without internals Ph.D. Thesis, University of Dortmund, Germany, 1987. [83] B.H. Chen, N.S. Yang, Characteristics of a cocurrent multistage bubble column, Ind. Eng. Chem. Res. 28(9) (1989) 1405-1410. [84] S.C. Saxena, B.B. Patel, Heat transfer investigations in a bubble column with immersed probes of different diameters, Int. Commun. Heat Mass Transf. 18(4) (1991) 467-478. [85] S.C. Saxena, A novel heat exchanger design for slurry bubble columns, Transp. Phenom. Therm. Eng., Proc. Int. Symp. 6(1993) 896-901. [86] B.H. Westermeyer, Heat transfer and gas holdup in two and three phase bubble column reactors with longitudinal internals Ph.D. Thesis, University of Dortmund, Germany, 1992. [87] P.E. Béliard, D. Schweich, P. Clément, P. Gauthier-Maradei, N. Dromard, Heat transfer metrology issues in two-phase bubble column reactors, Can. J. Chem. Eng. 88(2010) 543-550. [88] O.N. Manjrekar, M. Hamed, M.P. Dudukovic, Gas hold-up and mass transfer in a pilot scale bubble column with and without internals, Chem. Eng. Res. Des. 135(2018) 166-174. [89] F. Möller, C. Lavetty, E. Schleicher, M. Löschau, U. Hampel, M. Schubert, Hydrodynamics, mixing and mass transfer in a pilot-scale bubble column with dense internals, Chem. Eng. Sci. 202(2019) 491-507. [90] F. Möller, T. Dehmelt, N. Schmidt, Y.M. Lau, U. Hampel, M. Schubert, A recirculation cell approach for hydrodynamic and mass transfer modeling in bubble columns with and without internals, Chem. Eng. J. 383(2020) 123197. |