[1] |
M. Davoody, A.A.B. Abdul Raman, R. Parthasarathy, Maximizing gas-liquid interfacial area in a three-phase stirred vessel operating at high solids concentrations, Chem. Eng. Process. Process Intensif. 104(6) (2016) 133-147.
|
[2] |
G.H. Sedahmed, Y.A. El-Taweel, M.H. Abdel-Aziz, et al., Mass and heat transfer enhancement at the wall of cylindrical agitated vessel by turbulence promoters, Chem. Eng. Process. Process Intensif. 80(4) (2014) 43-50.
|
[3] |
M.Y. Chisti, M. Moo-Young, Hydrodynamics and oxygen transfer in pneumatic bioreactor devices, Biotechnol. Bioeng. 31(5) (1988) 487-494.
|
[4] |
F. Scargiali, A. Busciglio, F. Grisafi, et al., Mass transfer and hydrodynamic characteristics of unbaffled stirred bio-reactors:Influence of impeller design, Biochem. Eng. J. 82(15) (2014) 41-47.
|
[5] |
J.B. Joshi, C.B. Elias, M.S. Patole, Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells, Chem. Eng. J. Biochem. Eng. J. 62(2) (1996) 121-141.
|
[6] |
J.P. Arnaud, C. Lacroix, L. Choplin, Effect of agitation rate on cell release rate and metabolism during continuous fermentation with entrapped growing, Biotechnol. Tech. 6(3) (1992) 265-270.
|
[7] |
J.P. Arnaud, C. Lacroix, C. Foussereau, et al., Shear stress effects on growth and activity of Lactobacillus delbrueckii subsp. bulgaricus, J. Biotechnol. 29(1) (1993) 157-175.
|
[8] |
N. Edwards, S. Beeton, A.T. Bull, et al., A novel device for the assessment of shear effects on suspended microbial cultures, Appl. Microbiol. Biotechnol. 30(2) (1989) 190-195.
|
[9] |
M. Cai, X. Zhou, J. Lu, et al., Enhancing aspergiolide A production from a shearsensitive and easy-foaming marine-derived filamentous fungus Aspergillus glaucus by oxygen carrier addition and impeller combination in a bioreactor, Bioresour. Technol. 102(3) (2011) 3584-3586.
|
[10] |
Y. Chisti, U.J. Jauregui-Haza, Oxygen transfer and mixing in mechanically agitated airlift bioreactors, Biochem. Eng. J. 10(2) (2002) 143-153.
|
[11] |
A. Karimi, F. Golbabaei, M.R. Mehrnia, et al., Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes, Iran. J. Environ. Health Sci. Eng. 10(6) (2013) 1-9.
|
[12] |
F. Scargiali, A. Busciglio, F. Grisafi, et al., Oxygen transfer performance of unbaffled stirred vessels in view of their use as biochemical reactors for animal cell growth, Chem. Eng. Trans. 27(1) (2012) 205-210.
|
[13] |
N.M. Atef, M.H. Abdel-Aziz, Y.O. Fouad, et al., Mass and heat transfer at an array of horizontal cylinders placed at the bottom of a square agitated vessel, Chem. Eng. Res. Des. 94(9) (2015) 449-455.
|
[14] |
G. Baldi, R. Conti, E. Alaria, Complete suspension of particles in mechanically agitated vessels, Chem. Eng. Sci. 33(1) (1978) 21-25.
|
[15] |
R. Angst, M. Kraume, Experimental investigations of stirred solid/liquid systems in three different scales:Particle distribution and power consumption, Chem. Eng. Sci. 61(9) (2006) 2864-2870.
|
[16] |
T.Y. See, A.A. Abdul Raman, R.S.S. Raja Ehsan Shah, et al., Study of sparger location on solid suspension in a triple-impeller stirred vessel, Asia Pac. J. Chem. Eng. 11(2) (2016) 229-236.
|
[17] |
M.M. Buffo, L.J. Correa, M.N. Esperanca, et al., Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor, Biochem. Eng. J. 114(10) (2016) 130-139.
|
[18] |
C.H. Zheng, Y.J. Huang, J.S. Guo, et al., Investigation of cleaner sulfide mineral oxidation technology:Simulation and evaluation of stirred bioreactors for goldbioleaching process, J. Clean. Prod. 192(8) (2018) 364-375.
|
[19] |
Y. Sano, N. Yamaguchi, T. Adachi, Mass transfer coefficients for suspended particles in agitated vessels and bubble columns, J. Chem. Eng. Jpn. 7(4) (1974) 255-261.
|
[20] |
N. Dohi, T. Takahashi, K. Minekawa, et al., Power consumption and solid suspension performance of large-scale impellers in gas-liquid-solid three-phase stirred tank reactors, Chem. Eng. J. 97(2-3) (2004) 103-114.
|
[21] |
A. Satio, M. Kamiwano, Power consumption, gas dispersion and solid suspension in three phase mixing vessels, Proceedings of the Proc 6th European Conference on Mixing Pavia, Italy F, 1998, Springer, Pavia, Italy, 1998.
|
[22] |
H. Ameur, M. Bouzit, Power consumption for stirring shear thinning fluids by two-blade impeller, Energy 50(2) (2013) 326-332.
|
[23] |
Y. Chisti, Animal-cell damage in sparged bioreactors, Trends Biotechnol. 18(10) (2000) 420-432.
|
[24] |
T.N. Zwietering, Suspending of solid particles in liquid by agitators, Chem. Eng. Sci. 8(3) (1958) 244-253.
|
[25] |
L.-j. Zhang, T. Li, W.-y. Ying, et al., Rising and descending bubble size distributions in gas-liquid and gas-liquid-solid slurry bubble column reactor, Chem. Eng. Res. Des. 86(10) (2008) 1143-1154.
|
[26] |
L.j. Zhang, T. Li, W.y. Ying, et al., Experimental study on bubble rising and descending velocity distribution in a slurry bubble column reactor, Chem. Eng. Technol. 31(9) (2008) 1362-1368.
|
[27] |
B. Wang, T. Li, Q.W. Sun, et al., Experimental study on flow behavior in a gas-solid fluidized bed for the methanol-to-olefins process, Chem. Eng. Technol. 33(10) (2010) 1591-1600.
|
[28] |
S. Kim, X.Y. Fu, X. Wang, et al., Development of the miniaturized four-sensor conductivity probe and the signal processing scheme, Int. J. Heat Mass Transf. 43(22) (2000) 4101-4118.
|
[29] |
P. Riedlberger, D. Weuster-Botz, New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis, Bioresour. Technol. 106(Supplement C) (2012) 138-146.
|
[30] |
J. Ding, X. Wang, X.-F. Zhou, et al., CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production, Bioresour. Technol. 101(18) (2010) 7005-7013.
|
[31] |
A.R. Khopkar, J. Aubin, C. Xuereb, et al., Gas-liquid flow generated by a pitchedblade turbine:Particle image velocimetry measurements and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 42(21) (2003) 5318-5332.
|
[32] |
C. Gentric, D. Mignon, J. Bousquet, et al., Comparison of mixing in two industrial gas-liquid reactors using CFD simulations, Chem. Eng. Sci. 60(8-9) (2005) 2253-2272.
|
[33] |
X. Wang, J. Ding, W.-Q. Guo, et al., A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation, Bioresour. Technol. 101(24) (2010) 9749-9757.
|
[34] |
R. Panneerselvam, S. Savithri, G.D. Surender, CFD modeling of gas-liquid-solid mechanically agitated contactor, Chem. Eng. Res. Des. 86(12) (2008) 1331-1344.
|
[35] |
B.N. Murthy, R.S. Ghadge, J.B. Joshi, CFD simulations of gas-liquid-solid stirred reactor:Prediction of critical impeller speed for solid suspension, Chem. Eng. Sci. 62(24) (2007) 7184-7195.
|
[36] |
J.X. Xu, H. Wang, J.J. Wang, et al., CFD Simulation of Mixing Effects in Gas-Liquid-Solid Stirred Reactor, Proceedings of the Adv Mat Res, F, 2012.
|
[37] |
F. Wang, Z. Mao, Y. Wang, et al., Measurement of phase holdups in liquid-liquid-solid three-phase stirred tanks and CFD simulation, Chem. Eng. Sci. 61(22) (2006) 7535-7550.
|
[38] |
A. Inc., Ansys Fluent Theory Guide, ANSYS, Inc., Canonsburg, 2013.
|
[39] |
A.R. Khopkar, A.R. Rammohan, V.V. Ranade, et al., Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations, Chem. Eng. Sci. 60(8-9) (2005) 2215-2229.
|
[40] |
M. Ljungqvist, A. Rasmuson, Numerical simulation of the two-phase flow in an axially stirred vessel, Chem. Eng. Res. Des. 79(5) (2001) 533-546.
|
[41] |
R. Zadghaffari, J.S. Moghaddas, Evaluation of drag force effect on hold-up in a gas-liquid stirred tank reactor, J. Chem. Eng. Jpn. 43(10) (2010) 833-840.
|
[42] |
A.R. Khopkar, G.R. Kasat, A.B. Pandit, et al., CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns, Chem. Eng. Sci. 61(9) (2006) 2921-2929.
|
[43] |
G.L. Lane, M.P. Schwarz, G.M. Evans, Modelling of the interaction between gas and liquid in stirred vessels, 10th European Conference on Mixing, Elsevier Science, Amsterdam 2000, pp. 197-204.
|
[44] |
A. Brucato, F. Grisafi, G. Montante, Particle drag coefficients in turbulent fluids, Chem. Eng. Sci. 53(18) (1998) 3295-3314.
|
[45] |
A. Tomiyama, Struggle with computational bubble dynamics, Proceedings of the Third International Conference on Multiphase Flow, Lyon, France, F, 1998, Elsevier Science Ltd., Lyon, France, 1998.
|
[46] |
L. Schiller, Z. Naumann, A drag coefficient correlation, VDI Ztg. 77(1935) 318-320.
|
[47] |
N.T. Padial, W.B. VanderHeyden, R.M. Rauenzahn, et al., Three-dimensional simulation of a three-phase draft-tube bubble column, Chem. Eng. Sci. 55(16) (2000) 3261-3273.
|
[48] |
Y. Sato, M. Sadatomi, K. Sekoguchi, Momentum and heat transfer in two-phase bubble flow-I. Theory, Int. J. Multiphase Flow 7(2) (1981) 167-177.
|
[49] |
J.O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J. 1(3) (1955) 289-295.
|
[50] |
R.S. Cherry, E.T. Papoutsakis, Hydrodynamic effects on cells in agitated tissue culture reactors, Bioprocess Eng. 1(1) (1986) 29-41.
|
[51] |
K.M. Dhanasekharan, J. Sanyal, A. Jain, et al., A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics, Chem. Eng. Sci. 60(1) (2005) 213-218.
|
[52] |
F. Kerdouss, A. Bannari, P. Proulx, et al., Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model, Comput. Chem. Eng. 32(8) (2008) 1943-1955.
|
[53] |
S. Nedeltchev, Correction of the penetration theory applied for prediction of mass transfer coefficients in a high-pressure bubble column operated with gasoline and toluene, J. Chem. Eng. Jpn. 36(5) (2003) 630-633.
|
[54] |
R. Higbie, The rate of absorption of a pure gas into a still liquid during short period of exposure, Trans. AIChE 31(16) (1935) 365-389.
|
[55] |
Y. Zhang, Y. Bai, H. Wang, CFD analysis of inter-phase forces in a bubble stirred vessel, Chem. Eng. Res. Des. 91(1) (2013) 29-35.
|
[56] |
G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63(8) (2008) 2107-2118.
|
[57] |
S. Yang, X. Li, C. Yang, et al., Computational fluid dynamics simulation and experimental measurement of gas and solid holdup distributions in a gas-liquid-solid stirred reactor, Ind. Eng. Chem. Res. 55(12) (2016) 3276-3286.
|
[58] |
X. Geng, Z. Gao, Y. Bao, PIV study of flow in an aerated tank with a hollow blade turbine, Int. J. Chem. React. Eng. 10(1) (2012) 850-868.
|
[59] |
G. Montante, A. Paglianti, F. Magelli, Analysis of dilute solid-liquid suspensions in turbulent stirred tanks, Chem. Eng. Res. Des. 90(10) (2012) 1448-1456.
|
[60] |
V.B. Rewatkar, K.S.M.S.R. Rao, J.B. Joshi, Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 1. Experimental part, Ind. Eng. Chem. Res. 30(8) (1991) 1770-1784.
|
[61] |
N.N. Dutta, V.G. Pangarkar, Critical impeller speed for solid suspension in multiimpeller agitated contactors:Solid-liquid system, Chem. Eng. Commun. 137(1) (1995) 135-146.
|
[62] |
K. Saravanan, A.W. Patwardban, J.B. Joshi, Critical impeller speed for solid suspension in gas inducing type mechanically agitated contactors, Can. J. Chem. Eng. 75(8) (1997) 664-676.
|
[63] |
A.P. van der Westhuizen, D.A. Deglon, Solids suspension in a pilot-scale mechanical flotation cell:A critical impeller speed correlation, Miner. Eng. 21(8) (2008) 621-629.
|
[64] |
A. Tamburini, A. Cipollina, G. Micale, et al., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of the minimum impeller speed for complete suspension, Chem. Eng. J. 193-194(2012) 234-255.
|
[65] |
S. Hosseini, D. Patel, F. Ein-Mozaffari, et al., Study of solid-liquid mixing in agitated tanks through computational fluid dynamics modeling, Ind. Eng. Chem. Res. 49(9) (2010) 4426-4435.
|
[66] |
M. Bohnet, G. Niesmak, Distribution of solids in stirred suspension, Ger. Chem. Eng. 51(4) (1979) 314-315.
|
[67] |
L.M. Oshinowo, A. Bakker, CFD modeling of solids suspension in stirred tanks, Proceedings of the TMS Annual Meeting, Seattle, WA, F, 2002. Minerals and Materials:Seattle, WA, 2002.
|
[68] |
A. Tamburini, A. Cipollina, G. Micale, et al., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of solid particle distribution, Chem. Eng. J. 223(2013) 875-890.
|