[1] W. Bi, Y.J. Hu, H. Jiang, J. Lei, X.Y. Wan, L. Zhang, C.Z. Li, Flame process constructing CQDs/TiO2-C heterostructure with novel electron transfer channel between internal and external carbon species, Combust. Flame 228 (2021) 163-172 [2] B.O. Arani, C.E. Frouzakis, J. Mantzaras, K. Boulouchos, Direct numerical simulations of turbulent catalytic and gas-phase combustion of H2/air over Pt at practically-relevant Reynolds numbers, Proc. Combust. Inst. 37 (4) (2019) 5489-5497 [3] R. Strobel, S.E. Pratsinis, Flame aerosol synthesis of smart nanostructured materials, J. Mater. Chem. 17 (45) (2007) 4743-4756 [4] Y.J. Hu, C.Z. Li, Progress on flame aerosol synthesis of nanomaterials, Mater. China 31 (3) (2012) 44-55 [5] Y.J. Hu, C.Z. Li, F. Gu, H.B. Jiang, Y. Zhao, Morphology and structure of TiO2/SiO2 nanocomposites prepared by muti-jet flame reactor, Chin. J. Inorg. Chem. 22 (12) (2006) 2253-2257. (in Chinese) [6] Y.J. Hu, H. Jiang, Y.F. Li, B.Q. Wang, L. Zhang, C.Z. Li, Y. Wang, T. Cohen, Y. Jiang, P. Biswas, Engineering the outermost layers of TiO2nanoparticles usingin situMg doping in a flame aerosol reactor, AIChE J. 63 (3) (2017) 870-880 [7] X. Zhao, Y.J. Hu, H. Jiang, J.R. Yu, R.X. Jiang, C.Z. Li, Engineering TiO2 supported Pt sub-nanoclusters via introducing variable valence Co ion in high-temperature flame for CO oxidation, Nanoscale 10 (28) (2018) 13384-13392 [8] D.Y. Cai, Y.L. Wang, X.J. Duan, D. Hu, Y.B. Li, Y.J. Hu, Numerical simulation of temperature field in premixed high-speed jet flame reactor, J. East China Uni. Sci.Technol. 46 (2) (2020) 173-178. (in Chinese) [9] B. Sarkar, R.R. Ratnakar, V. Balakotaiah, Bifurcation analysis of catalytically assisted hydrogen combustion in monolith reactors, Chem. Eng. J. 425 (2021) 130318 [10] S.P. Borisov, A.N. Kudryavtsev, A.A. Shershnev, Comparison of detailed chemical models of hydrogen combustion in numerical simulations of detonation, Combust. Explos. Shock. Waves 57 (3) (2021) 270-284 [11] A. Gruber, M.R. Bothien, A. Ciani, K. Aditya, J.H. Chen, F.A. Williams, Direct Numerical Simulation of hydrogen combustion at auto-ignitive conditions:Ignition, stability and turbulent reaction-front velocity, Combust. Flame 229 (2021) 111385 [12] S. Meziane, A. Bentebbiche, Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine, Int. J. Hydrog. Energy 44 (29) (2019) 15610-15621 [13] M. Ijaz, M. Farhan, M. Farooq, G. Moeenuddin, S. Nawaz, M.E.M. Soudagar, H.M. Saqib, Q. Ali, Numerical investigation of particles characteristics on cyclone performance for sustainable environment, Part. Sci. Technol. 39 (4) (2021) 495-503 [14] D.D. Hu, G.S. Long, X. Zeng, F. Wang, J.R. Yue, G.W. Xu, Gas back-mixing characteristics and the effects on gas-solid reaction behavior and activation energy characterization,CIESC J.72 (03) (2021) 1354-1363. (in Chinese) [15] H.T. Zhang, B.Q. Ding, Back-mixing-A important concept ofchemical engineering, Chem. Eng.14(3) (2000) 24-25. (in Chinese) [16] P.P. Zhang, Y.Q. Zhang, W.H. Zhang, S.C. Tian, Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells:Influence of reservoir properties, Energy 238 (2022) 121738 [17] A. Karanam, S. Ganju, J. Chattopadhyay, TimeScale analysis, numerical simulation and validation of flame acceleration, and DDT in hydrogen-air mixtures, Combust. Sci. Technol. 193 (13) (2021) 2217-2240 [18] X.D. Jing, H. Wen, Z.H. Xu, Temperature field simulation of polyolefin-absorber mixture by FDTD-FDM model during microwave heating, Chin. J. Chem. Eng. 28 (11) (2020) 2900-2917 [19] M.G. Ktalkherman, I.G. Namyatov, Simulation of hydrocarbons pyrolysis in a fast-mixing reactor, Chin. J. Chem. Eng. 23 (6) (2015) 941-953 [20] Y.F. Zhou, Y.F. Han, Y.J. Lu, H.C. Bai, X.Y. Hu, X.C. Zhang, F.H. Xie, X. Luo, J.D. Wang, Y.R. Yang, Numerical simulations and comparative analysis of two- and three-dimensional circulating fluidized bed reactors for CO2 capture, Chin. J. Chem. Eng. 28 (12) (2020) 2955-2967 [21] M. Ó Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C.K. Westbrook, A comprehensive modeling study of hydrogen oxidation, Int. J. Chem. Kinet. 36 (11) (2004) 603-622 [22] A. Minotti, P. Teofilatto, Swirling combustor energy converter:H2/air simulations of separated chambers, Energies 8 (9) (2015) 9930-9945 [23] F. Tabet, B. Sarh, M. Birouk, I. Gökalp, The near-field region behaviour of hydrogen-air turbulent non-premixed flame, Heat Mass Transf. 48 (2) (2012) 359-371 [24] W. Bi, Y.J. Hu, N. Jiang, L. Zhang, H. Jiang, X. Zhao, C.Y. Wang, C.Z. Li, Ultra-fast construction of plaque-like Li2TiO3/TiO2 heterostructure for efficient gas-solid phase CO2 photoreduction, Appl. Catal. B:Environ. 269 (2020) 118810 [25] W. Bi, Y.J. Hu, H. Jiang, L. Zhang, C.Z. Li, Revealing the sudden alternation in pt@h-BN nanoreactors for nearly 100% CO2 -to-CH4 photoreduction, Adv. Funct. Mater. 31 (29) (2021) 2010780 [26] N. Jiang, Y.J. Hu, H. Jiang, C.Z. Li, Hierarchical TiO2 microspheres with enlarged lattice spacing for rapid and ultrastable sodium storage, Chem. Eng. Sci. 231 (2021) 116298 [27] A.J. Gröhn, B. Buesser, J.K. Jokiniemi, S.E. Pratsinis, Design of turbulent flame aerosol reactors by mixing-limited fluid dynamics, Ind. Eng. Chem. Res. 50 (6) (2011) 3159-3168 [28] D.L. Kong, M.M. Zhou, S. Wang, K. Luo, D.B. Li, J.R. Fan, Eulerian-Lagrangian simulation of chemical looping combustion with wide particle size distributions, Chem. Eng. Sci. 245 (2021) 116849 [29] Z.Y. Li, M. Ferrarotti, A. Cuoci, A. Parente, Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure:Combustion model formulation and implementation details, Appl. Energy 225 (2018) 637-655 [30] A.A. Shaklein, Numerical study of polyoxymethylene burning in a combustion reactor, Case Stud. Therm. Eng. 26 (2021) 101114 [31] J.J. Zhang, Z.G. Lei, J.W. Li, B.H. Chen, Simulation of a reverse flow reactor for the catalytic combustion of lean methane emissions, Chin. J. Chem. Eng. 22 (8) (2014) 843-853 [32] Y. Liu, Y.B. Deng, J.R. Shi, R.J. Xiao, H.P. Li, Pore-level numerical simulation of methane-air combustion in a simplified two-layer porous burner, Chin. J. Chem. Eng. 34 (2021) 87-96 [33] Y.D. Zhang, C. Lou, D.H. Liu, Y. Li, L.F. Ruan, Chemical effects of CO2 concentration on soot formation in jet-stirred/plug-flow reactor, Chin. J. Chem. Eng. 21 (11) (2013) 1269-1283 [34] J.E.E. González-Durán, M.A. Zamora-Antuñano, L. Lira-Cortés, J. Rodríguez-Reséndiz, J.M. Olivares-Ramírez, N.E.M. Lozano, Numerical simulation for the combustion chamber of a reference calorimeter, Processes 8 (5) (2020) 575 [35] Fluent Inc., Fluent 2020R2 Theory Guide, 2020. [36] K. Hu, Numerical simulation of oil-waterseparation characteristics in tee tube, Chin. J. Process Eng.17(1) (2017) 29-34. (in Chinese) [37] X.X. Duan, X. Feng, C. Yang, Z.S. Mao, CFD modeling of turbulent reacting flow in a semi-batch stirred-tank reactor, Chin. J. Chem. Eng. 26 (4) (2018) 675-683 [38] X.M. Luo, J. Ren, T. Chen, Y.B. Wang, Y. Lü, L.M. He, Influence of slug flow on flow fields in a gas-liquid cylindrical cyclone separator:A simulation study, Chin. J. Chem. Eng. 28 (8) (2020) 2075-2083 [39] M. Sandberg, What is ventilation efficiency? Build. Environ. 16 (2) (1981) 123-135 [40] P.A. Vesilind, The Rosin-Rammler particle size distribution, Resour. Recover. Conserv. 5 (3) (1980) 275-277 |