中国化学工程学报 ›› 2022, Vol. 52 ›› Issue (12): 136-145.DOI: 10.1016/j.cjche.2021.10.030
• Full Length Article • 上一篇 下一篇
Weilong Shi2,4, Yanan Liu1, Wei Sun1, Yuanzhi Hong1, Xiangyu Li1, Xue Lin1, Feng Guo3, Junyou Shi1
收稿日期:
2021-08-28
修回日期:
2021-10-19
出版日期:
2022-12-28
发布日期:
2023-01-31
通讯作者:
Xue Lin,E-mail:jlsdlinxue@126.com;Feng Guo,E-mail:gfeng0105@126.com;Junyou Shi,E-mail:bhsjy64@163.com
基金资助:
Weilong Shi2,4, Yanan Liu1, Wei Sun1, Yuanzhi Hong1, Xiangyu Li1, Xue Lin1, Feng Guo3, Junyou Shi1
Received:
2021-08-28
Revised:
2021-10-19
Online:
2022-12-28
Published:
2023-01-31
Contact:
Xue Lin,E-mail:jlsdlinxue@126.com;Feng Guo,E-mail:gfeng0105@126.com;Junyou Shi,E-mail:bhsjy64@163.com
Supported by:
摘要: β-lactam antibiotics in aquatic environment have severely damaged ecological stability and caused a series of environmental pollution problems to be solved urgently. Herein, a novel composite photocatalyst prepared by loading carbon dots (CDs) onto rod-like CoFe2O4 (CFO), which can effectively degrade amoxicillin (AMX) by photocatalytic/peroxymonosulfate (PMS) activation under visible light irradiation. The degradation results exhibits that the optimal degradation efficiency with 97.5% within 80 min is achievd by the CDs-CFO-5 composite. Such enhanced activity is ascribed to the introduction of CDs that effectively improves the separation efficiency of photogenerated electron pairs and creates new active sites as electron bridges that improve the photocatalytic performance. More importantly, a strong synergistic between CDs and photo-induced electrons generated from CFO can further activiate PMS to provide more SO4-· and ·OH radicals for boosting the degradation ability towards AMX. The present study aims to elucidate positive role of CDs in photocatalytic/peroxymonosulfate activation during the degradation reaction.
Weilong Shi, Yanan Liu, Wei Sun, Yuanzhi Hong, Xiangyu Li, Xue Lin, Feng Guo, Junyou Shi. Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4[J]. 中国化学工程学报, 2022, 52(12): 136-145.
Weilong Shi, Yanan Liu, Wei Sun, Yuanzhi Hong, Xiangyu Li, Xue Lin, Feng Guo, Junyou Shi. Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe2O4[J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 136-145.
[1] X.L. Weng, W.L. Cai, S. Lin, Z.L. Chen, Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron, Appl. Clay Sci. 147 (2017) 137–142 [2] D. Aksu Demirezen, Y.Ş. Yıldız, D. Demirezen Yılmaz, Amoxicillin degradation using green synthesized iron oxide nanoparticles: Kinetics and mechanism analysis, Environ. Nanotechnol. Monit. Manag. 11 (2019) 100219 [3] X.Z. Bian, Y. Xia, T.T. Zhan, L. Wang, W. Zhou, Q.Z. Dai, J.M. Chen, Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: Electrode characterization, operational parameters optimization and degradation mechanism, Chemosphere 233 (2019) 762–770 [4] M. Verma, A.K. Haritash, Photocatalytic degradation of Amoxicillin in pharmaceutical wastewater: A potential tool to manage residual antibiotics, Environ. Technol. Innov. 20 (2020) 101072 [5] Y.Q. Zhang, Y.J. Xiao, Y. Zhong, T.T. Lim, Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial activity, Chem. Eng. J. 372 (2019) 420–428 [6] F.J. Ren, W.W. Zhu, J.Y. Zhao, H.T. Liu, X.A. Zhang, H. Zhang, H. Zhu, Y. Peng, B. Wang, Nitrogen-doped graphene oxide aerogel anchored with spinel CoFe2O4 nanoparticles for rapid degradation of tetracycline, Sep. Purif. Technol. 241 (2020) 116690 [7] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, Y.B. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Sep. Purif. Technol. 212 (2019) 142–149 [8] W.Y. Han, D.G. Li, M.Q. Zhang, X.M. Hu, X.G. Duan, S.M. Liu, S.B. Wang, Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots, J. Hazard. Mater. 395 (2020) 122695 [9] I.A. Ike, K.G. Linden, J.D. Orbell, M. Duke, Critical review of the science and sustainability of persulphate advanced oxidation processes, Chem. Eng. J. 338 (2018) 651–669 [10] W.L. Shi, Y.N. Liu, W. Sun, Y.Z. Hong, X.Y. Li, X. Lin, F. Guo, J.Y. Shi, Assembling g-C3N4 nanosheets on rod-like CoFe2O4 nanocrystals to boost photocatalytic degradation of ciprofloxacin with peroxymonosulfate activation, Mater. Today Commun. 29 (2021) 102871 [11] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406 (2021) 126844 [12] F. Chen, G.X. Huang, F.B. Yao, Q. Yang, Y.M. Zheng, Q.B. Zhao, H.Q. Yu, Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism, Water Res. 173 (2020) 115559 [13] X.B. Dong, B.X. Ren, Z.M. Sun, C.Q. Li, X.W. Zhang, M.H. Kong, S.L. Zheng, D.D. Dionysiou, Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation, Appl. Catal. B Environ. 253 (2019) 206–217 [14] A. Durairaj, T. Sakthivel, A. Obadiah, S. Vasanthkumar, Enhanced photocatalytic activity of transition metal ions doped g–C3N4 nanosheet activated by PMS for organic pollutant degradation, J. Mater. Sci. Mater. Electron. 29 (10) (2018) 8201–8209 [15] L. Yang, Y.Z. Hong, E.L. Liu, X. Zhang, L.Y. Wang, X. Lin, J.Y. Shi, Significant enhancement of photocatalytic H2 production simultaneous with dye degradation over Ni2P modified In2O3 nanocomposites, Sep. Purif. Technol. 263 (2021) 118366 [16] M.F. Liang, T. Borjigin, Y.H. Zhang, B.H. Liu, H. Liu, H. Guo, Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction, Appl. Catal. B Environ. 243 (2019) 566–575 [17] Y.N. Liu, C. Liu, C.L. Shi, W. Sun, X. Lin, W.L. Shi, Y.Z. Hong, Carbon-based quantum dots (QDs) modified ms/tz-BiVO4 heterojunction with enhanced photocatalytic performance for water purification, J. Alloys Compd. 881 (2021) 160437 [18] W.L. Shi, F. Guo, H.B. Wang, S.J. Guo, H. Li, Y.J. Zhou, C. Zhu, Y.H. Liu, H. Huang, B.D. Mao, Y. Liu, Z.H. Kang, New insight of water-splitting photocatalyst: H2O 2-resistance poisoning and photothermal deactivation in sub-micrometer CoO octahedrons, ACS Appl. Mater. Interfaces 9 (24) (2017) 20585–20593 [19] W. Sun, S. Yang, Y.N. Liu, C.L. Shi, W.L. Shi, X. Lin, F. Guo, Y.Z. Hong, Fabricating nitrogen-doped carbon dots (NCDs) on Bi3.64Mo0.36O6.55 nanospheres: A nanoheterostructure for enhanced photocatalytic performance for water purification, J. Phys. Chem. Solids 159 (2021) 110283 [20] W.L. Shi, F. Guo, S.L. Yuan, In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation, Appl. Catal. B Environ. 209 (2017) 720–728 [21] F. Guo, W.L. Shi, M.Y. Li, Y. Shi, H.B. Wen, 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline, Sep. Purif. Technol. 210 (2019) 608–615 [22] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, W.X. Hou, C. Wang, W.L. Shi, C.Y. Lu, Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation, Appl. Surf. Sci. 491 (2019) 88–94 [23] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 228 (2019) 115770 [24] M. Golshan, B. Kakavandi, M. Ahmadi, M. Azizi, Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: Process feasibility, mechanism and pathway, J. Hazard. Mater. 359 (2018) 325–337 [25] W.L. Shi, J.B. Wang, S. Yang, X. Lin, F. Guo, J.Y. Shi, Fabrication of a ternary carbon dots/CoO/g-C3N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production, J. Chem. Technol. Biotechnol. 95 (8) (2020) 2129–2138 [26] K.L. Yan, X. Shang, Z.Z. Liu, B. Dong, S.S. Lu, J.Q. Chi, W.K. Gao, Y.M. Chai, C.G. Liu, A facile method for reduced CoFe2O4 nanosheets with rich oxygen vacancies for efficient oxygen evolution reaction, Int. J. Hydrog. Energy 42 (38) (2017) 24150–24158 [27] M.M. Gao, J. Feng, F. He, W.J. Zeng, X. Wang, Y.M. Ren, T. Wei, Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe2O4@carbon microsphere/g-C3N4 with a hierarchical sandwich-structure, Appl. Surf. Sci. 507 (2020) 145167 [28] A.H. Mady, M.L. Baynosa, D. Tuma, J.J. Shim, Heterogeneous activation of peroxymonosulfate by a novel magnetic 3D γ-MnO2@ZnFe2O4/rGO nanohybrid as a robust catalyst for phenol degradation, Appl. Catal. B Environ. 244 (2019) 946–956 [29] X.G. Duan, H.Q. Sun, S.B. Wang, Metal-free carbocatalysis in advanced oxidation reactions, Acc. Chem. Res. 51(3) (2018) 678–687 [30] L.H. Zhang, T. Wei, Z.M. Jiang, C.Q. Liu, H. Jiang, J. Chang, L.Z. Sheng, Q.H. Zhou, L.B. Yuan, Z.J. Fan, Electrostatic interaction in electrospun nanofibers: Double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage, Nano Energy 48 (2018) 238–247 [31] H.Y. Gao, J.J. Xiang, Y. Cao, Hierarchically porous CoFe2O4 nanosheets supported on Ni foam with excellent electrochemical properties for asymmetric supercapacitors, Appl. Surf. Sci. 413 (2017) 351–359 [32] X.Y. Yao, J.H. Kong, X.S. Tang, D. Zhou, C.Y. Zhao, R. Zhou, X.H. Lu, Facile synthesis of porous CoFe2O4 nanosheets for lithium-ion battery anodes with enhanced rate capability and cycling stability, RSC Adv. 4 (52) (2014) 27488–27492 [33] C.L. Xia, S.J. Zhu, T.L. Feng, M.X. Yang, B. Yang, Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots, Adv. Sci. (Weinh) 6 (23) (2019) 1901316 [34] V. Strauss, A. Roth, M. Sekita, D.M. Guldi, Efficient energy-conversion materials for the future: Understanding and tailoring charge-transfer processes in carbon nanostructures, Chem 1 (4) (2016) 531–556 [35] T. Gatti, N. Vicentini, M. Mba, E. Menna, Organic functionalized carbon nanostructures for functional polymer-based nanocomposites, Eur. J. Org. Chem. 2016 (6) (2016) 1071–1090 [36] W.L. Shi, F. Guo, H.B. Wang, C.G. Liu, Y.J. Fu, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution, Appl. Surf. Sci. 433 (2018) 790–797 [37] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, M.F. Wu, Y.B. Tang, Enhanced visible-light-driven photocatalytic H2 evolution on the novel nitrogen-doped carbon dots/CuBi2O4 microrods composite, J. Alloys Compd. 775 (2019) 511–517 [38] H. Li, H.B. Wang, J.Q. Guo, S. Ye, W.L. Shi, X. Peng, J. Song, J.L. Qu, Long-wavelength excitation of carbon dots as the probe for real-time imaging of the living-cell cycle process, Sens. Actuat. B Chem. 311 (2020) 127891 [39] F. Guo, H.R. Sun, L. Cheng, W.L. Shi, Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight, New J. Chem. 44 (26) (2020) 11215–11223 [40] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56 (3) (2021) 2226–2240 [41] H.T. Li, Z.H. Kang, Y. Liu, S.T. Lee, Carbon nanodots: Synthesis, properties and applications, J. Mater. Chem. 22 (46) (2012) 24230 [42] S.J. Yang, X.J. Qiu, P.K. Jin, M. Dzakpasu, X.C. Wang, Q.H. Zhang, L. zhang, L. Yang, D.H. Ding, W.D. Wang, K. Wu, MOF-templated synthesis of CoFe2O4 nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A, Chem. Eng. J. 353 (2018) 329–339 [43] S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh, Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: Boosting visible-light-driven photocatalytic activity, J. Taiwan Inst. Chem. Eng. 87 (2018) 98–111 [44] X.Q. Wu, J. Zhao, L.P. Wang, M.M. Han, M.L. Zhang, H.B. Wang, H. Huang, Y. Liu, Z.H. Kang, Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light, Appl. Catal. B Environ. 206 (2017) 501–509 [45] S.Q. Huang, Y.G. Xu, M. Xie, H. Xu, M.Q. He, J.X. Xia, L.Y. Huang, H.M. Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light, Colloids Surf. A Physicochem. Eng. Aspects 478 (2015) 71–80 [46] A. Paul, S.S. Dhar, Designing Cu2V2O7/CoFe2O4/g-C3N4 ternary nanocomposite: A high performance magnetically recyclable photocatalyst in the reduction of 4-nitrophenol to 4-aminophenol, J. Solid State Chem. 290 (2020) 121563 [47] M. Kamranifar, A. Allahresani, A. Naghizadeh, Synthesis and characterizations of a novel CoFe2O4@CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater, J. Hazard. Mater. 366 (2019) 545–555 [48] J. Wang, G.H. Wang, B. Cheng, J.G. Yu, J.J. Fan, Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo red photodegradation, Chin. J. Catal. 42 (1) (2021) 56–68 [49] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, C. Yan, F. Guo, Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light, Chem. Eng. J. 382 (2020) 122960 [50] C.X. Li, H.N. Che, P.W. Huo, Y.S. Yan, C.B. Liu, H.J. Dong, Confinement of ultrasmall CoFe2O4 nanoparticles in hierarchical ZnIn2S4 microspheres with enhanced interfacial charge separation for photocatalytic H2 evolution, J. Colloid Interface Sci. 581 (2021) 764–773 [51] D.S. Lei, J.Q. Xue, X.Y. Peng, S.H. Li, Q. Bi, C.B. Tang, L. Zhang, Oxalate enhanced synergistic removal of chromium(VI) and arsenic(III) over ZnFe2O4/g-C3N4: Z-scheme charge transfer pathway and photo-Fenton like reaction, Appl. Catal. B Environ. 282 (2021) 119578 [52] H.J. Zhang, L.Z. Liu, X.R. Zhang, S. Zhang, F.N. Meng, Microwave-assisted solvothermal synthesis of shape-controlled CoFe2O4 nanoparticles for acetone sensor, J. Alloys Compd. 788 (2019) 1103–1112 [53] R.S. Sahu, Y.H. Shih, W.L. Chen, New insights of metal free 2D graphitic carbon nitride for photocatalytic degradation of bisphenol A, J. Hazard. Mater. 402 (2021) 123509 [54] S. Farhadi, F. Siadatnasab, A. Khataee, Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite, Ultrason. Sonochem. 37 (2017) 298–309 [55] J.G. Zhang, H.P. Bi, G.Y. He, Y.W. Zhou, H.Q. Chen, Fabrication of Ag3PO4-PANI-GO composites with high visible light photocatalytic performance and stability, J. Environ. Chem. Eng. 2 (2) (2014) 952–957 [56] J.Q. Pan, Y.Z. Sheng, J.X. Zhang, J.M. Wei, P. Huang, X. Zhang, B.X. Feng, Preparation of carbon quantum dots/TiO2 nanotubes composites and their visible light catalytic applications, J. Mater. Chem. A 2 (42) (2014) 18082–18086 [57] Z.J. Xie, Y.P. Feng, F.L. Wang, D.N. Chen, Q.X. Zhang, Y.Q. Zeng, W.Y. Lv, G.G. Liu, Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline, Appl. Catal. B Environ. 229 (2018) 96–104 [58] S. Renukadevi, A.P. Jeyakumari, A one-pot microwave irradiation route to synthesis of CoFe2O4-g-C3N4 heterojunction catalysts for high visible light photocatalytic activity: Exploration of efficiency and stability, Diam. Relat. Mater. 109 (2020) 108012 [59] J.M. Dangwang Dikdim, Y. Gong, G.B. Noumi, J.M. Sieliechi, X. Zhao, N. Ma, M. Yang, J.B. Tchatchueng, Peroxymonosulfate improved photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composite under visible light irradiation, Chemosphere 217 (2019) 833–842 [60] W.L. Shi, M.Y. Li, H.J. Ren, F. Guo, X.L. Huang, Y. Shi, Y.B. Tang, Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity, Beilstein J. Nanotechnol. 10 (2019) 1360–1367 [61] Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo, Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light, Appl. Catal. B Environ. 254 (2019) 541–550 [62] C.Y. Lu, F. Guo, Q.Z. Yan, Z.J. Zhang, D. Li, L.P. Wang, Y.H. Zhou, Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light, J. Alloys Compd. 811 (2019) 151976 [63] S.H. Wang, L. Zhao, W. Huang, H. Zhao, J.Y. Chen, Q. Cai, X. Jiang, C.Y. Lu, W.L. Shi, Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline, Mater. Res. Bull. 135 (2021) 111161 [64] F. Guo, X.L. Huang, Z.H. Chen, Y.X. Shi, H.R. Sun, X.F. Cheng, W.L. Shi, L.Z. Chen, Formation of unique hollow ZnSnO3@ZnIn2S4 core-shell heterojunction to boost visible-light-driven photocatalytic water splitting for hydrogen production, J. Colloid Interface Sci. 602 (2021) 889–897 [65] C. Zhao, Z.Z. Liao, W. Liu, F.Y. Liu, J.Y. Ye, J.L. Liang, Y.Y. Li, Carbon quantum dots modified tubular g-C3N4 with enhanced photocatalytic activity for carbamazepine elimination: Mechanisms, degradation pathway and DFT calculation, J. Hazard. Mater. 381 (2020) 120957 [66] F. Guo, X.L. Huang, Z.H. Chen, L.W. Cao, X.F. Cheng, L.Z. Chen, W.L. Shi, Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics, Sep. Purif. Technol. 265 (2021) 118477 [67] J.J. Pan, F. Guo, H.R. Sun, M.Y. Li, X.F. Zhu, L.L. Gao, W.L. Shi, Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity, J. Mater. Sci. 56 (11) (2021) 6663–6675 [68] J.J. Pan, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline, Sep. Purif. Technol. 263 (2021) 118398 [69] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, X. Lin, A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen, Int. J. Hydrog. Energy 45 (55) (2020) 30521–30532 [70] H.T. Xu, R. Xiao, J.R. Huang, Y. Jiang, C.X. Zhao, X.F. Yang, In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production, Chin. J. Catal. 42 (1) (2021) 107–114 [71] Z.H. Chen, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution, J. Colloid Interface Sci. 607 (2022) 1391–1401 [72] F. Guo, Z.H. Chen, X.L. Huang, L.W. Cao, X.F. Cheng, W.L. Shi, L.Z. Chen, Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light, Sep. Purif. Technol. 275 (2021) 119223 [73] E.L. Liu, X. Lin, Y.Z. Hong, L. Yang, B.F. Luo, W.L. Shi, J.Y. Shi, Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution, Renew. Energy 178 (2021) 757–765 [74] X.F. Zhu, F. Guo, J.J. Pan, H.R. Sun, L.L. Gao, J.X. Deng, X.Y. Zhu, W.L. Shi, Fabrication of visible-light-response face-contact ZnSnO3@g-C3N4 core–shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight, J. Mater. Sci. 56 (6) (2021) 4366–4379 [75] B.Y. Ren, W. Shen, L. Li, S.Z. Wu, W. Wang, 3D CoFe2O4 nanorod/flower-like MoS2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes, Appl. Surf. Sci. 447 (2018) 711–723 [76] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes: Mechanism and degradation pathway, Sep. Purif. Technol. 253 (2020) 117518 [77] J.J. Dang, J.R. Guo, L.P. Wang, F. Guo, W.L. Shi, Y.L. Li, W.S. Guan, Construction of Z-scheme Fe3O4/BiOCl/BiOI heterojunction with superior recyclability for improved photocatalytic activity towards tetracycline degradation, J. Alloys Compd. 893 (2022) 162251 [78] S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, S. Vadivel, Fabrication of novel g-C3N4 nanosheet/carbon dots/Ag6Si2O7 nanocomposites with high stability and enhanced visible-light photocatalytic activity, J. Taiwan Inst. Chem. Eng. 103 (2019) 94–109 [79] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, L.Z. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater, Chem. Eng. J. 395 (2020) 125118 [80] P. Chen, Y.J. Gou, J.M. Ni, Y.M. Liang, B.Q. Yang, F.F. Jia, S.X. Song, Efficient Ofloxacin degradation with Co(II)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation, Chem. Eng. J. 401 (2020) 125978 [81] S.F. Tang, Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate, Int. J. Electrochem. Sci. (2020) 2470–2480 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||