中国化学工程学报 ›› 2023, Vol. 53 ›› Issue (1): 332-345.DOI: 10.1016/j.cjche.2022.01.014
Qingming Ma1, Jianhong Xu2
收稿日期:
2021-10-19
修回日期:
2022-01-04
出版日期:
2023-01-28
发布日期:
2023-04-08
通讯作者:
Qingming Ma,E-mail:qma@qdu.edu.cn;Jianhong Xu,E-mail:xujianhong@tsinghua.edu.cn
基金资助:
Qingming Ma1, Jianhong Xu2
Received:
2021-10-19
Revised:
2022-01-04
Online:
2023-01-28
Published:
2023-04-08
Contact:
Qingming Ma,E-mail:qma@qdu.edu.cn;Jianhong Xu,E-mail:xujianhong@tsinghua.edu.cn
Supported by:
摘要: The concept of “carbon neutrality” poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions. Developing high-efficient, low-cost, energy-efficient and eco-friendly microfluidic-based microchemical engineering is of great significance. Such kind of “green microfluidics” can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes, which represents the new power for the transformation and upgrading of chemical engineering industry. Here, a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented, with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality. Development of green microfluidic systems are categorized and reviewed, including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods, and the use of more biocompatible and non-destructive fluidic systems such as aqueous two-phase systems (ATPSs). Moreover, low carbon applications benefit from green microfluidics are summarized, ranging from separation and purification of biomolecules, high-throughput screening of chemicals and drugs, rapid and cost-effective detections, to synthesis of fine chemicals and novel materials. Finally, challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed.
Qingming Ma, Jianhong Xu. Green microfluidics in microchemical engineering for carbon neutrality[J]. 中国化学工程学报, 2023, 53(1): 332-345.
Qingming Ma, Jianhong Xu. Green microfluidics in microchemical engineering for carbon neutrality[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 332-345.
[1] T. Tan, B. Chen, H. Zhang, Z. Cui, Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”, Chem. Ind. Eng. Prog. (China) 40 (3) (2021) 1137–1141. (in Chinese) [2] J. Chen, Carbon neutrality: toward a sustainable future, Innovation 2 (3) (2021) 100127. https://pubmed.ncbi.nlm.nih.gov/34557769/ [3] S. Jain, A. Agarwal, V. Jani, S. Singhal, P. Sharma, R. Jalan, Assessment of carbon neutrality and sustainability in educational campuses (CaNSEC): a general framework, Ecol. Indic. 76 (2017) 131–143. http://dx.doi.org/10.1016/j.ecolind.2017.01.012 [4] National Energy Administration of China, 13th Five-Year Plan for Energy Development, http://www.nea.gov.cn/135989417_14846217874961n.pdf (2020). (in Chinese) [5] J. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G. Luo, Design and scaling up of microchemical systems: a review, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 285–305. https://doi.org/10.1146/annurev-chembioeng-060816-101443 [6] Y. Wang, K. Wang, G. Luo, J. Xu, Y. Lv, Advances in research of microstructured chemical process, Sci. Sin.-Chim 44 (9) (2014) 1404–1412. https://doi.org/10.1360/n032014-00158 [7] G. Chen, Y. Zhao, J. Yue, Z. Dong, H. Cao, Q. Yuan, Transport phenomena in micro-chemical engineering, J. Chem. Ind. Eng. (China) 64 (1) (2013) 63–75. (in Chinese) [8] G. Chen, Q. Yuan, Micro-chemical technology, J. Chem. Ind. Eng. (China) 54 (4) (2003) 427–439. [9] G. Luo, K. Wang, Y. Wang, Y. Lv, J. Xu, Principles and applications of micro-structured chemical system, Chem. Ind. Eng. Prog. (China) 30 (8) (2011) 1637–1642. (in Chinese) [10] W. Wang, Y. Su, Z. Liu, X. Ju, R. Xie, L. Chu, Controllable microfluidic fabrication of microscale functional materials, Chem. Ind. Eng. Prog. (China) 38 (1) (2019) 421–433. (in Chinese) [11] G.M. Whitesides, The origins and the future of microfluidics, Nature 442 (7101) (2006) 368–373. https://pubmed.ncbi.nlm.nih.gov/16871203/ [12] Q. Ma, J. Cao, Y. Gao, S. Han, Y. Liang, T. Zhang, X. Wang, Y. Sun, Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications, Nanoscale 12 (29) (2020) 15512–15527. https://doi.org/10.1039/d0nr02397c [13] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Microfluidic diagnostic technologies for global public health, Nature 442 (7101) (2006) 412–418. https://www.nature.com/articles/nature05064 [14] M. Guo, A. Rotem, J. Heyman, D. Weitz, Droplet microfluidics for high-throughput biological assays, Lab a Chip 12 (12) (2012) 2146–2155. https://doi.org/10.1039/c2lc21147e [15] Q. Ma, Y. Song, W. Sun, J. Cao, H. Yuan, X. Wang, Y. Sun, H. C. Shum, Cell-inspired all-aqueous microfluidics: from intracellular liquid–liquid phase separation toward advanced biomaterials, Adv. Sci. 7 (7) (2020) 1903359. https://doi.org/10.1002/advs.201903359 [16] N.C. Speller, G.G. Morbioli, M.E. Cato, T.P. Cantrell, E.M. Leydon, B.E. Schmidt, A.M. Stockton, Cutting edge microfluidics: xurography and a microwave, Sens. Actuat. B Chem. 291 (2019) 250–256. http://dx.doi.org/10.1016/j.snb.2019.04.004 [17] G.G. Morbioli, N.C. Speller, M.E. Cato, T.P. Cantrell, A.M. Stockton, Rapid and low-cost development of microfluidic devices using wax printing and microwave treatment, Sens. Actuat. B Chem. 284 (2019) 650–656. http://dx.doi.org/10.1016/j.snb.2018.12.053 [18] J.M. Sidorova, N. Li, D.C. Schwartz, A. Folch, R.J. Monnat Jr, Microfluidic-assisted analysis of replicating DNA molecules, Nat. Protoc. 4 (6) (2009) 849–861. https://www.nature.com/articles/nprot.2009.54 [19] D. Qin, Y. Xia, G.M. Whitesides, Soft lithography for micro- and nanoscale patterning, Nat. Protoc. 5 (3) (2010) 491–502. https://pubmed.ncbi.nlm.nih.gov/20203666/ [20] X. Hou, Y. Zhang, G.T.D. Santiago, M.M. Alvarez, J. Ribas, S.J. Jonas, P.S. Weiss, A.M. Andrews, J. Aizenberg, A. Khademhosseini, Interplay between materials and microfluidics, Nat. Rev. Mater. 2 (2017) 17016. https://www.nature.com/articles/natrevmats201716 [21] M. Schmidt, H. Hottenroth, M. Schottler, G. Fetzer, B. Schlüter, Life cycle assessment of silicon wafer processing for microelectronic chips and solar cells, Int. J. Life Cycle Assess. 17 (2) (2012) 126–144. http://dx.doi.org/10.1007/s11367-011-0351-1 [22] M.S. Branham, T.G. Gutowski, Deconstructing energy use in microelectronics manufacturing: an experimental case study of a MEMS fabrication facility, Environ. Sci. Technol. 44 (11) (2010) 4295–4301. https://pubmed.ncbi.nlm.nih.gov/20411980/ [23] E.D. Williams, R.U. Ayres, M. Heller, The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices, Environ. Sci. Technol. 36 (24) (2002) 5504–5510. http://dx.doi.org/10.1021/es025643o [24] A. Günther, K.F. Jensen, Multiphase microfluidics: from flow characteristics to chemical and materials synthesis, Lab Chip 6 (12) (2006) 1487–1503. https://pubmed.ncbi.nlm.nih.gov/17203152/ [25] Y. Song, A. Sauret, H.C. Shum, All-aqueous multiphase microfluidics, Biomicrofluidics 7 (6) (2013) 61301. https://pubmed.ncbi.nlm.nih.gov/24454609/ [26] O. Vidal, B. Goffé, N. Arndt, Metals for a low-carbon society, Nat. Geosci. 6 (11) (2013) 894–896. https://www.nature.com/articles/ngeo1993 [27] H. Nakajima, P. Dijkstra, K. Loos, The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed, Polymers (Basel) 9 (10) (2017) E523. https://pubmed.ncbi.nlm.nih.gov/30965822/ [28] A.T. Adeleye, C.K. Odoh, O.C. Enudi, O.O. Banjoko, O.O. Osiboye, E. Toluwalope Odediran, H. Louis, Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass, Process. Biochem. 96 (2020) 174–193. http://dx.doi.org/10.1016/j.procbio.2020.05.032 [29] A.J. Morgan, L.H.S. Jose, W.D. Jamieson, J.M. Wymant, B. Song, P. Stephens, D.A. Barrow, O.K. Castell, Simple and versatile 3D printed microfluidics using fused filament fabrication, PLoS One 11 (4) (2016) e0152023. https://pubmed.ncbi.nlm.nih.gov/27050661/ [30] K.R. King, C.C.J. Wang, M.R. Kaazempur-Mofrad, J.P. Vacanti, J.T. Borenstein, Biodegradable microfluidics, Adv. Mater. 16 (22) (2004) 2007–2012. https://doi.org/10.1002/adma.200306522 [31] C. J. Bettinger, E. J. Weinberg, K. M. Kulig, J. P. Vacanti, Y. Wang, J. T. Borenstein, R. Langer, Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer, Adv. Mater. 18 (2) (2006) 165–169. https://www.semanticscholar.org/paper/e527a437e5200c4b213f8c7e43c849eba11a4f5d [32] S.W. Zhao, Y. Chen, B.P. Partlow, A.S. Golding, P. Tseng, J. Coburn, M.B. Applegate, J.E. Moreau, F.G. Omenetto, D.L. Kaplan, Bio-functionalized silk hydrogel microfluidic systems, Biomaterials 93 (2016) 60–70. http://dx.doi.org/10.1016/j.biomaterials.2016.03.041 [33] A. Paguirigan, D.J. Beebe, Gelatin based microfluidic devices for cell culture, Lab Chip 6 (3) (2006) 407–413. https://pubmed.ncbi.nlm.nih.gov/16511624/ [34] M. Cabodi, N.W. Choi, J.P. Gleghorn, C.S.D. Lee, L.J. Bonassar, A.D. Stroock, A microfluidic biomaterial, J. Am. Chem. Soc. 127 (40) (2005) 13788–13789. https://doi.org/10.1021/ja054820t [35] J. Luecha, A. Hsiao, S. Brodsky, G. L. Liu, J. L. Kokini, Green microfluidic devices made of corn proteins, Lab Chip 11 (20) (2011) 3419–3425. https://pubmed.ncbi.nlm.nih.gov/21918783/ [36] J.J. Park, X.L. Luo, H. Yi, T.M. Valentine, G.F. Payne, W.E. Bentley, R. Ghodssi, G.W. Rubloff, Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices, Lab a Chip 6 (10) (2006) 1315. https://doi.org/10.1039/b603101c [37] Y.B. Ling, J. Rubin, Y.T. Deng, C. Huang, U. Demirci, J.M. Karp, A. Khademhosseini, A cell-laden microfluidic hydrogel, Lab a Chip 7 (6) (2007) 756. [38] R. Lausecker, V. Badilita, U. Gleißner, U. Wallrabe, Introducing natural thermoplastic shellac to microfluidics: a green fabrication method for point-of-care devices, Biomicrofluidics 10 (4) (2016) 044101. https://pubmed.ncbi.nlm.nih.gov/27478525/ [39] J.K. Zhu, C. Wang, Biodegradable plastics: green hope or greenwashing? Mar Pollut Bull 161 (Pt B) (2020) 111774. https://pubmed.ncbi.nlm.nih.gov/33122148/ [40] O.J. Schmitz, P.A. Raymond, J.A. Estes, W.A. Kurz, G.W. Holtgrieve, M.E. Ritchie, D.E. Schindler, A.C. Spivak, R.W. Wilson, M.A. Bradford, V. Christensen, L. Deegan, V. Smetacek, M.J. Vanni, C.C. Wilmers, Animating the carbon cycle, Ecosystems 17 (2) (2014) 344–359. https://doi.org/10.1007/s10021-013-9715-7 [41] A.M.D. Wan, D. Devadas, E.W.K. Young, Recycled polymethylmethacrylate (PMMA) microfluidic devices, Sens. Actuat. B Chem. 253 (2017) 738–744. http://dx.doi.org/10.1016/j.snb.2017.07.011 [42] A.M. Tothill, M. Partridge, S.W. James, R.P. Tatam, Fabrication and optimisation of a fused filament 3D-printed microfluidic platform, J. Micromechanics Microengineering 27 (3) (2017) 035018. http://dx.doi.org/10.1088/1361-6439/aa5ae3 [43] P. Domachuk, K. Tsioris, F. G. Omenetto, D. L. Kaplan, Bio-microfluidics: Biomaterials and Biomimetic Designs, Adv. Mater. 22 (2) (2010) 249–260. https://doi.org/10.1039/b615486g [44] S.Y. Choi, S.J. Park, W.J. Kim, J.E. Yang, H. Lee, J. Shin, S.Y. Lee, One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in escherichia coli, Nat. Biotechnol. 34 (4) (2016) 435–440. https://pubmed.ncbi.nlm.nih.gov/26950748/ [45] M. Irimia-Vladu, E. D. Głowacki, G. Schwabegger, L. Leonat, H. Z. Akpinar, H. Sitter, S. Bauer, N. S. Sariciftci, Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors, Green Chem. 15 (6) (2013) 1473–1476. [46] Q. Ma, Y. Song, G. Baier, C. Holtze, H.C. Shum, Osmo-solidification of all-aqueous emulsion with enhanced preservation of protein activity, J. Mater. Chem. B 4 (7) (2016) 1213–1218. https://doi.org/10.1039/c5tb02187a [47] D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem. 70 (23) (1998) 4974–4984. https://doi.org/10.1021/ac980656z [48] M.S. Thomas, B. Millare, J.M. Clift, D.D. Bao, C. Hong, V.I. Vullev, Print-and-peel fabrication for microfluidics: what's in it for biomedical applications? Ann. Biomed. Eng. 38 (1) (2010) 21–32. http://dx.doi.org/10.1007/s10439-009-9831-x [49] G.V. Kaigala, S. Ho, R. Penterman, C.J. Backhouse, Rapid prototyping of microfluidic devices with a wax printer, Lab a Chip 7 (3) (2007) 384. https://doi.org/10.1039/b617764f [50] V.I. Vullev, J.D. Wan, V. Heinrich, P. Landsman, P.E. Bower, B. Xia, B. Millare, G. Jones 2nd, Nonlithographic fabrication of microfluidic devices, J. Am. Chem. Soc. 128 (50) (2006) 16062–16072. https://pubmed.ncbi.nlm.nih.gov/17165759/ [51] V. Saggiomo, A.H. Velders, Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices, Adv Sci (Weinh) 2 (9) (2015) 1500125. https://pubmed.ncbi.nlm.nih.gov/27709002/ [52] N.C. Speller, G.G. Morbioli, M.E. Cato, Z.A. Duca, A.M. Stockton, Green, low-cost, user-friendly, and elastomeric (GLUE) microfluidics, ACS Appl. Polym. Mater. 2 (3) (2020) 1345–1355. https://doi.org/10.1021/acsapm.9b01201 [53] A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology, Angew. Chem. Int. Ed Engl. 49 (34) (2010) 5846–5868. https://pubmed.ncbi.nlm.nih.gov/20572214/ [54] T. Kong, J. Wu, K.W. Yeung, M.K. To, H.C. Shum, L. Wang, Microfluidic fabrication of polymeric core-shell microspheres for controlled release applications, Biomicrofluidics 7 (4) (2013) 44128. https://pubmed.ncbi.nlm.nih.gov/24404061/ [55] X.B. Ji, S. Guo, C.F. Zeng, C.Q. Wang, L.X. Zhang, Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device, RSC Adv. 5 (4) (2015) 2517–2522. https://doi.org/10.1039/c4ra10389k [56] S. Park, P.A.L. Wijethunga, H. Moon, B. Han, On-chip characterization of cryoprotective agent mixtures using an EWOD-based digital microfluidic device, Lab a Chip 11 (13) (2011) 2212. https://doi.org/10.1039/c1lc20111e [57] M. Toiya, V. Vanag, I. Epstein, Diffusively coupled chemical oscillators in a microfluidic assembly, Angew. Chem. 120 (40) (2008) 7867–7869. https://doi.org/10.1002/ange.200802339 [58] N. Wu, Y. Zhu, S. Brown, J. Oakeshott, T.S. Peat, R. Surjadi, C. Easton, P.W. Leech, B.A. Sexton, A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract, Lab a Chip 9 (23) (2009) 3391. https://doi.org/10.1039/b911581a [59] Z. Liu, S.T. Chan, H.A. Faizi, R.C. Roberts, H.C. Shum, Droplet-based electro-coalescence for probing threshold disjoining pressure, Lab Chip 15 (9) (2015) 2018–2024. https://pubmed.ncbi.nlm.nih.gov/25771963/ [60] D.M.A. Buzza, P.D.I. Fletcher, T.K. Georgiou, N. Ghasdian, Water-in-water emulsions based on incompatible polymers and stabilized by triblock copolymers–templated polymersomes, Langmuir 29 (48) (2013) 14804–14814. https://doi.org/10.1021/la403356j [61] A.G. Teixeira, R. Agarwal, K.R. Ko, J. Grant-Burt, B.M. Leung, J.P. Frampton, Emerging biotechnology applications of aqueous two-phase systems, Adv. Healthc. Mater. 7 (6) (2018) e1701036. https://pubmed.ncbi.nlm.nih.gov/29280350/ [62] H. C. Shum, J. Varnell, D. Weitz, Microfluidic fabrication of water-in-water (w/w) jets and emulsions, Biomicrofluidics 6 (1) (2012) 12808–128089. https://pubmed.ncbi.nlm.nih.gov/22662075/ [63] B.U. Moon, N. Abbasi, S. G. Jones, D. K. Hwang, S. S. H. Tsai, Water-in-water droplets by passive microfluidic flow focusing, Anal. Chem. 88 (7) (2016) 3982–3989. https://doi.org/10.1021/acs.analchem.6b00225 [64] Å. Gustafsson, H. Wennerström, F. Tjerneld, The nature of phase separation in aqueous two-polymer systems, Polymer 27 (11) (1986) 1768–1770. [65] J. Esquena, Water-in-water (W/W) emulsions, Curr. Opin. Colloid Interface Sci. 25 (2016) 109–119. http://dx.doi.org/10.1016/j.cocis.2016.09.010 [66] A. Sauret, H. Cheung Shum, Forced generation of simple and double emulsions in all-aqueous systems, Appl. Phys. Lett. 100 (15) (2012) 154106. http://dx.doi.org/10.1063/1.3702434 [67] Z. Li, S.Y. Mak, A. Sauret, H.C. Shum, Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy, Lab a Chip 14 (4) (2014) 744. https://doi.org/10.1039/c3lc51176f [68] Y. Chao, H.C. Shum, Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications, Chem. Soc. Rev. 49 (1) (2020) 114–142. https://pubmed.ncbi.nlm.nih.gov/31750468/ [69] M. Iqbal, Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, L. Huang, D. Peng, A. Sattar, M.A. Shabbir, H.I. Hussain, S. Ahmed, Z. Yuan, Aqueous two-phase system (ATPS): an overview and advances in its applications, Biol. Proced. Online 18 (2016) 18. https://pubmed.ncbi.nlm.nih.gov/27807400/ [70] I. Ziemecka, V. van Steijn, G.J. Koper, M. Rosso, A.M. Brizard, J.H. van Esch, M.T. Kreutzer, Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems, Lab Chip 11 (4) (2011) 620–624. https://pubmed.ncbi.nlm.nih.gov/21125099/ [71] Y. Song, Y. K. Chan, Q. Ma, Z. Liu, H. C. Shum, All-aqueous electrosprayed emulsion for templated fabrication of cytocompatible microcapsules, ACS Appl. Mater. Interfaces 7 (25) (2015) 13925–13933. https://doi.org/10.1021/acsami.5b02708 [72] D. F. C. Silva, A. M. Azevedo, P. Fernandes, V. Chu, J. P. Conde, M. R. Aires-Barros, Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy, J. Chromatogr. A 1487 (2017) 242–247. http://dx.doi.org/10.1016/j.chroma.2016.12.036 [73] Y. Huang, T. Meng, T. Guo, W. Li, W. Yan, X. Li, S. Wang, Z. Tong, Aqueous two-phase extraction for bovine serum albumin (BSA) with co-laminar flow in a simple coaxial capillary microfluidic device, Microfluid. Nanofluidics 16 (3) (2014) 483–491. http://dx.doi.org/10.1007/s10404-013-1245-2 [74] D. F. C. Silva, A. M. Azevedo, P. Fernandes, V. Chu, J. P. Conde, M. R. Aires-Barros, Design of a microfluidic platform for monoclonal antibody extraction using an aqueous two-phase system, J. Chromatogr. A 1249 (2012) 1–7. http://dx.doi.org/10.1016/j.chroma.2012.05.089 [75] E. Bras, R. Soares, A. M. Azevedo, P. Fernandes, M. Arévalo-Rodríguez, V. Chu, J. P. Conde, M. R. Aires-Barros, A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems, J. Chromatogr. A 1515 (2017) 252–259. https://pubmed.ncbi.nlm.nih.gov/28807549/ [76] T. Hahn, G. Münchow, S. Hardt, Electrophoretic transport of biomolecules across liquid-liquid interfaces, J. Phys. Condens. Matter 23 (18) (2011) 184107. https://pubmed.ncbi.nlm.nih.gov/21508474/ [77] R. J. Meagher, Y. K. Light, A. K. Singh, Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags, Lab Chip 8 (4) (2008) 527–532. https://pubmed.ncbi.nlm.nih.gov/18369506/ [78] U. Novak, M. Lakner, I. Plazl, P. Žnidaršič-Plazl, Experimental studies and modeling of α-amylase aqueous two-phase extraction within a microfluidic device, Microfluid. Nanofluidics 19 (1) (2015) 75–83. http://dx.doi.org/10.1007/s10404-015-1550-z [79] G. Münchow, F. Schönfeld, S. Hardt, K. Graf, Protein diffusion across the interface in aqueous two-phase systems, Langmuir 24 (16) (2008) 8547–8553. https://doi.org/10.1021/la800956j [80] Y. S. Huh, C. M. Jeong, H. N. Chang, S. Y. Lee, W. H. Hong, T. J. Park, Rapid separation of bacteriorhodopsin using a laminar-flow extraction system in a microfluidic device, Biomicrofluidics 4 (1) (2010) 14103. https://pubmed.ncbi.nlm.nih.gov/20644672/ [81] R. R. G. Soares, P. Novo, A. M. Azevedo, P. Fernandes, M. R. Aires-Barros, V. Chu, J. P. Conde, On-chip sample preparation and analyte quantification using a microfluidic aqueous two-phase extraction coupled with an immunoassay, Lab Chip 14 (21) (2014) 4284–4294. [82] S. Meng, L. Xue, C. Xie, R. Bai, X. Yang, Z. Qiu, T. Guo, Y. Wang, T. Meng, Enhanced enzymatic reaction by aqueous two-phase systems using parallel-laminar flow in a double Y-branched microfluidic device, Chem. Eng. J. 335 (2018) 392–400. http://dx.doi.org/10.1016/j.cej.2017.10.085 [83] T. Thorsen, S. J. Maerkl, S. R. Quake, Microfluidic large-scale integration, Science 298 (5593) (2002) 580–584. https://pubmed.ncbi.nlm.nih.gov/12351675/ [84] I. E. Araci, P. Brisk, Recent developments in microfluidic large scale integration, Curr. Opin. Biotechnol. 25 (2014) 60–68. https://pubmed.ncbi.nlm.nih.gov/24484882/https://pubmed.ncbi.nlm.nih.gov/25228473/ [85] S. L. Schreiber, J. D. Kotz, M. Li, J. Aubé, C.P. Austin, J. C. Reed, H. Rosen, E. L. White, L. A. Sklar, C. W. Lindsley, B. R. Alexander, J. A. Bittker, P. A. Clemons, A. de Souza, M. A. Foley, M. Palmer, A. F. Shamji, M. J. Wawer, Y. Yao, Advancing biological understanding and therapeutics discovery with small-molecule probes, Cell 161 (6) (2015) 1252–1265. http://dx.doi.org/10.1016/j.cell.2015.05.023 [86] D. G. Brown, J. Boström, Where do recent small molecule clinical development candidates come from? J. Med. Chem. 61 (21) (2018) 9442–9468. https://doi.org/10.1021/acs.jmedchem.8b00675 [87] L. Chin, J. N. Andersen, P. A. Futreal, Cancer genomics: from discovery science to personalized medicine, Nat. Med. 17 (3) (2011) 297–303. https://doi.org/10.1038/nm.2323 [88] P. Neužil, S. Giselbrecht, K. Länge, T. J. Huang, A. Manz, Revisiting lab-on-a-chip technology for drug discovery, Nat. Rev. Drug Discov. 11 (8) (2012) 620–632. https://doi.org/10.1038/nrd3799 [89] E. Michelini, L. Cevenini, L. Mezzanotte, A. Coppa, A. Roda, Cell-based assays: Fuelling drug discovery, Anal. Bioanal. Chem. 398 (1) (2010) 227–38. http://dx.doi.org/10.1007/s00216-010-3933-z [90] E. M. Payne, D. A. Holland-Moritz, S. W. Sun, R. T. Kennedy, High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects, Lab a Chip 20 (13) (2020) 2247–2262. https://doi.org/10.1039/d0lc00347f [91] M. Sesen, T. Alan, A. Neild, Droplet control technologies for microfluidic high throughput screening (μHTS), Lab Chip 17 (14) (2017) 2372–2394. https://pubmed.ncbi.nlm.nih.gov/28631799/ [92] Z. Q. Tong, A. Ivask, K. Y. Guo, S. McCormick, E. Lombi, C. Priest, N. H. Voelcker, Crossed flow microfluidics for high throughput screening of bioactive chemical-cell interactions, Lab Chip 17 (3) (2017) 501–510. https://pubmed.ncbi.nlm.nih.gov/28074962/ [93] D. Midkiff, A. San-Miguel, Microfluidic technologies for high throughput screening through sorting and on-chip culture of C. elegans, Molecules 24 (23) (2019) E4292. https://pubmed.ncbi.nlm.nih.gov/31775328/ [94] M. Wiendahl, S. A. Oelmeier, F. Dismer, J. Hubbuch, High-throughput screening-based selection and scale-up of aqueous two-phase systems for pDNA purification, J Sep Sci 35 (22) (2012) 3197–3207. https://pubmed.ncbi.nlm.nih.gov/22888101/ [95] G. Du, Q. Fang, J. M. den Toonder, Microfluidics for cell-based high throughput screening platforms - A review, Anal. Chim. Acta 903 (2016) 36–50. https://pubmed.ncbi.nlm.nih.gov/26709297/ [96] S. A. Oelmeier, C. Ladd Effio, J. Hubbuch, High throughput screening based selection of phases for aqueous two-phase system-centrifugal partitioning chromatography of monoclonal antibodies, J. Chromatogr. A 1252 (2012) 104–114. http://dx.doi.org/10.1016/j.chroma.2012.06.075 [97] M. Bensch, B. Selbach, J. Hubbuch, High throughput screening techniques in downstream processing: Preparation, characterization and optimization of aqueous two-phase systems, Chem. Eng. Sci. 62 (7) (2007) 2011–2021. http://dx.doi.org/10.1016/j.ces.2006.12.053 [98] V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, A. S. Basu, A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening, Lab a Chip 10 (18) (2010) 2433. https://doi.org/10.1039/c004768f [99] E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, M. L. Samuels, Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci. USA 106 (34) (2009) 14195–14200. https://pubmed.ncbi.nlm.nih.gov/19617544/ [100] M. H. Wu, S. B. Huang, G. B. Lee, Microfluidic cell culture systems for drug research, Lab a Chip 10 (8) (2010) 939. https://doi.org/10.1039/b921695b [101] J. El-Ali, P. K. Sorger, K. F. Jensen, Cells on chips, Nature 442 (7101) (2006) 403–411. https://www.nature.com/articles/nature05063 [102] T. H. Park, M. L. Shuler, Integration of cell culture and microfabrication technology, Biotechnol. Prog. 19 (2) (2003) 243–253. https://pubmed.ncbi.nlm.nih.gov/12675556/ [103] J. Melin, S. R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation, Annu. Rev. Biophys. Biomol. Struct. 36 (2007) 213–231. https://doi.org/10.1146/annurev.biophys.36.040306.132646 [104] D. J. Beebe, G. A. Mensing, G. M. Walker, Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4 (2002) 261–286. https://pubmed.ncbi.nlm.nih.gov/12117759/ [105] R. N. Zare, S. Kim, Microfluidic platforms for single-cell analysis, Annu. Rev. Biomed. Eng. 12 (2010) 187–201. https://doi.org/10.1146/annurev-bioeng-070909-105238 [106] R. Gómez-Sjöberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, S. R. Quake, Versatile, fully automated, microfluidic cell culture system, Anal. Chem. 79 (22) (2007) 8557–8563. https://pubmed.ncbi.nlm.nih.gov/17953452/ [107] A. I. Olives, V. González-Ruiz, M. A. Martín, Sustainable and eco-friendly alternatives for liquid chromatographic analysis, ACS Sustain. Chem. Eng. 5 (7) (2017) 5618–5634. http://dx.doi.org/10.1021/acssuschemeng.7b01012 [108] J. Płotka, M. Tobiszewski, A. M. Sulej, M. Kupska, J. Namieśnik, Green chromatography, J. Chromatogr. A 1307 (2013) 1–20. https://pubmed.ncbi.nlm.nih.gov/23932374/ [109] S. Armenta, M. de la Guardia, Green chromatography for the analysis of foods of animal origin, Trac Trends Anal. Chem. 80 (2016) 517–530. http://dx.doi.org/10.1016/j.trac.2015.06.012 [110] S. Jakiela, T. S. Kaminski, O. Cybulski, D. B.Weibel, P. Garstecki, Rücktitelbild: Bacterial Growth and Adaptation in Microdroplet Chemostats, Angew. Chem., Int. Ed. 52 (34) (2013) 8908–8911. [111] D. Agustini, L. Fedalto, M. F. Bergamini, L. H. Marcolino-Junior, Microfluidic thread based electroanalytical system for green chromatographic separations, Lab a Chip 18 (4) (2018) 670-678. [112] A. W. Martinez, S. T. Phillips, G. M. Whitesides, Three-dimensional microfluidic devices fabricated in layered paper and tape, Proc. Natl. Acad. Sci. USA 105 (50) (2008) 19606–19611. https://pubmed.ncbi.nlm.nih.gov/19064929/ [113] A. W. Martinez, S. T. Phillips, M. J. Butte, G. M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays, Angew. Chem. Int. Ed Engl. 46 (8) (2007) 1318–1320. https://pubmed.ncbi.nlm.nih.gov/17211899/ [114] A. K. Yetisen, M. S. Akram, C. R. Lowe, Paper-based microfluidic point-of-care diagnostic devices, Lab a Chip 13 (12) (2013) 2210–2251. https://pubmed.ncbi.nlm.nih.gov/23652632/ [115] A. W. Martinez, S. T. Phillips, G. M. Whitesides, E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices, Anal. Chem. 82 (1) (2010) 3–10. https://pubmed.ncbi.nlm.nih.gov/20000334/ [116] K. S. Elvira, X. C. I. Solvas, R. C. R. Wootton, A. J. DeMello, The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem. 5 (11) (2013) 905–915. https://pubmed.ncbi.nlm.nih.gov/24153367/ [117] L. Clime, J. Daoud, D. Brassard, L. Malic, M. Geissler, T. Veres, Active pumping and control of flows in centrifugal microfluidics, Microfluid. Nanofluidics 23 (3) (2019) 1–22. http://dx.doi.org/10.1007/s10404-019-2198-x [118] Y. H. Yap, A. A. Azmi, N. K. Mohd, F. S. J. Yong, S. Y. Kan, M. Z. A. Thirmizir, P. W. Chia, Green synthesis of silver nanoparticle using water extract of onion peel and application in the acetylation reaction, Arab. J. Sci. Eng. 45 (6) (2020) 4797–4807. http://dx.doi.org/10.1007/s13369-020-04595-3 [119] H. S. T. S. H. Abdullah, S. N. A. R. M. Asseri, W. N. K. W. Mohamad, S. Y. Kan, A. A. Azmi, F. S. Y. Julius, P. W. Chia, Green synthesis, characterization and applications of silver nanoparticle mediated by the aqueous extract of red onion peel, Environ. Pollut. 271 (2) (2021) 116295. [120] D. J. Magdalene, D. Muthuselvam, T. Pravinraj, Microfluidics-based green synthesis of silver nanoparticle from the aqueous leaf extract of Ipomea quamoclit L, Appl. Nanosci. 11 (7) (2021) 2073–2084. http://dx.doi.org/10.1007/s13204-021-01899-0 [121] S. H. Ma, J. Thiele, X. Liu, Y. P. Bai, C. Abell, W.T.S. Huck, Fabrication of microgel particles with complex shape via selective polymerization of aqueous two-phase systems, Small 8 (15) (2012) 2356–2360. https://doi.org/10.1002/smll.201102715 [122] U. Shimanovich, Y. Song, J. Brujic, H. C. Shum, T. P. Knowles, Multiphase protein microgels, Macromol. Biosci. 15 (4) (2015) 501–508. https://pubmed.ncbi.nlm.nih.gov/25407891/ [123] Y. Song, U. Shimanovich, T. C. Michaels, Q. Ma, J. Li, T. P. Knowles, H. C. Shum, Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces, Nat. Commun. 7 (2016) 12934. https://pubmed.ncbi.nlm.nih.gov/27725629/ [124] D. C. Dewey, C. A. Strulson, D. N. Cacace, P. C. Bevilacqua, C. D. Keating, Bioreactor droplets from liposome-stabilized all-aqueous emulsions, Nat. Commun. 5 (2014) 4670. https://pubmed.ncbi.nlm.nih.gov/25140538/ [125] Y. L. Zhang, F. Wu, W. E. Yuan, T. Jin, Polymersomes of asymmetric bilayer membrane formed by phase-guided assembly, J. Control. Release 147 (3) (2010) 413–419. http://dx.doi.org/10.1016/j.jconrel.2010.07.121 [126] X. F. Zhang, Z. G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches, Int. J. Mol. Sci. 17 (9) (2016) 1534. https://doi.org/10.3390/ijms17091534 [127] H. Yuan, Q. Ma, Y. Song, Y. H. Tang, Y. K. Chan, H. C. Shum, Phase-separation-induced formation of Janus droplets based on aqueous two-phase systems, Macromol. Chem. Phys. 218 (2) (2017) 1600422. https://doi.org/10.1002/macp.201600422 [128] Y. Song, T. Michaels, Q. Ma, Z. Liu, H. Yuan, S. Takayama, T. Knowles, H. C. Shum, Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils, Nat. Commun. 9 (1) (2018) 2110. https://pubmed.ncbi.nlm.nih.gov/29844310/ [129] D. N. Cacace, A. T. Rowland, J. J. Stapleton, D. C. Dewey, C. D. Keating, Aqueous emulsion droplets stabilized by lipid vesicles as microcompartments for biomimetic mineralization, Langmuir 31 (41) (2015) 11329–11338. http://dx.doi.org/10.1021/acs.langmuir.5b02754 [130] N. N. Deng, W. T. S. Huck, Microfluidic formation of monodisperse coacervate organelles in liposomes, Angew. Chem. Int. Ed Engl. 56 (33) (2017) 9736–9740. https://pubmed.ncbi.nlm.nih.gov/28658517/ [131] Z. J. Meng, W. Wang, R. Xie, X.J. Ju, Z. Liu, L. Y. Chu, Microfluidic generation of hollow Ca-alginate microfibers, Lab a Chip 16 (14) (2016) 2673–2681. https://doi.org/10.1039/c6lc00640j [132] Y. Cheng, F. Y. Zheng, J. Lu, L. R. Shang, Z. Y. Xie, Y. J. Zhao, Y. P. Chen, Z. Z. Gu, Bioinspired multicompartmental microfibers from microfluidics, Adv. Mater. 26 (30) (2014) 5184–5190. https://pubmed.ncbi.nlm.nih.gov/24934291/ [133] D. Lim, E. Lee, H. Kim, S. Park, S. Baek, J. Yoon, Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices, Soft Matter 11 (8) (2015) 1606–1613. https://pubmed.ncbi.nlm.nih.gov/25594916/ [134] R. X. Xie, P. D. Xu, Y. P. Liu, L. L. Li, G. A. Luo, M. Y. Ding, Q. L. Liang, Necklace-like microfibers with variable knots and perfusable channels fabricated by an oil-free microfluidic spinning process, Adv. Mater. 30 (14) (2018) 1705082. https://doi.org/10.1002/adma.201705082 [135] S. Mytnyk, A. G. L. Olive, F. Versluis, J. M. Poolman, E. Mendes, R. Eelkema, J. H. Van?Esch, Compartmentalizing supramolecular hydrogels using aqueous multi-phase systems, Angew. Chem. 129 (47) (2017) 15119–15123. https://doi.org/10.1002/ange.201706272 [136] M. Al-Wabel, J. Elfaki, A. Usman, Q. Hussain, Y. S. Ok, Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture, Environ. Res. 174 (2019) 69–79. https://pubmed.ncbi.nlm.nih.gov/31054524/ [137] J. B. Gao, Y. D. Liu, Y. Hoshino, G. Inoue, Amine-containing nanogel particles supported on porous carriers for enhanced carbon dioxide capture, Appl. Energy 253 (2019) 113567. http://dx.doi.org/10.1016/j.apenergy.2019.113567 [138] Y. Zhou, J. Huang, Z. Chen, Y. Wang, J. Xu, Controlled retention of droplets and the enhancement of mass transfer in microchannel with multi-groove structure, Chem. Eng. Sci. 209 (2019) 115223. http://dx.doi.org/10.1016/j.ces.2019.115223 [139] J. Huang, F. Sang, G. Luo, J. Xu, Continuous synthesis of Gabapentin with a microreaction system, Chem. Eng. Sci. 173 (2017) 507–513. http://dx.doi.org/10.1016/j.ces.2017.08.020 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||