[1] F. I. Khan, A. Kr Ghoshal, Removal of Volatile Organic Compounds from polluted air, J. Loss Prev. Process. Ind. 13 (6) (2000) 527–545. [2] S. H. Opperman, R. C. Brown, VOC emission control with polymeric adsorbents and microwave desorption, Pollut Eng. 31(1) (1999) 58-60. [3] T. Dobre, O.C. Pârvulescu, G. Iavorschi, M. Stroescu, A. Stoica, Volatile organic compounds removal from gas streams by adsorption onto activated carbon, Ind. Eng. Chem. Res. 53 (9) (2014) 3622–3628. 10.1021/ie402504u [4] A.K. Ghoshal, S.D. Manjare, Selection of appropriate adsorption technique for recovery of VOCs: an analysis, J. Loss Prev. Process. Ind. 15 (6) (2002) 413–421. 10.1016/S0950-4230(02)00042-6 [5] J.A. Bernstein, N. Alexis, H. Bacchus, I.L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, S.M. Tarlo, The health effects of nonindustrial indoor air pollution, J. Allergy Clin. Immunol. 121 (3) (2008) 585–591 [6] W. Wei , S. Wang , J. Hao , S. Cheng, Trends of chemical speciation profiles of an-thropogenic volatile organic compounds emissions in China, 2005-2020, Front. Env. Sci Eng. 8(1) (2014) 27-41. [7] H. Sui, T. Zhang, J.X. Cui, X.Q. Li, J. Crittenden, X.G. Li, L. He, Novel off-gas treatment technology to remove volatile organic compounds with high concentration, Ind. Eng. Chem. Res. 55 (9) (2016) 2594–2603.https://doi.org/10.1021/acs.iecr.5b02662http://dx.doi.org/10.1016/j.jtice.2017.02.019 [8] E.C. Moretti. VOC control reduce VOC and HAP emissions. Chem. Eng. Prog. 98(6) (2002) 30-40. [9] H. Sui, J.J. Liu, L. He, X.G. Li, A. Jani, Adsorption and desorption of binary mixture of acetone and ethyl acetate on silica gel, Chem. Eng. Sci. 197 (2019) 185–194.http://dx.doi.org/10.1016/j.ces.2018.12.010http://dx.doi.org/10.1016/j.ces.2018.12.010 [10] E. Gabruś, D. Downarowicz, Anhydrous ethanol recovery from wet air in TSA systems - Equilibrium and column studies, Chem. Eng. J. 288 (2016) 321–331.http://dx.doi.org/10.1016/j.cej.2015.11.110http://dx.doi.org/10.1016/j.cej.2015.11.110 [11] G. Swetha, T. Gopi, S.C. Shekar, C. Ramakrishna, B. Saini, P.V.L. Rao, Combination of adsorption followed by ozone oxidation with pressure swing adsorption technology for the removal of VOCs from contaminated air streams, Chem. Eng. Res. Des. 117 (2017) 725–732. [12] H. Zaitan, A. Korrir, T. Chafik, D. Bianchi, Evaluation of the potential of volatile organic compound (di-methyl benzene) removal using adsorption on natural minerals compared to commercial oxides, J Hazard Mater 262 (2013) 365–376. [13] H. Zaitan, M.H. Manero, H. Valdés, Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination, J. Environ. Sci. (China) 41 (2016) 59–68. [14] Y. Tavan, H. Azizpour, H. Bahmanyar, Mathematical modeling of volatile organic compounds removal over activated carbon, J. Environ. Chem. Eng. 9 (1) (2021) 104777. [15] R. Dawson, A.I. Cooper, D.J. Adams, Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers, Polym. Int. 62 (3) (2013) 345–352. 10.1002/pi.4407 [16] H. Sui, P. Jiang, X. Li, J.J. Liu, X.G. Li, L. He, Binary adsorption equilibrium and breakthrough of n-butyl acetate and p-xylene on granular activated carbon, Ind. Eng. Chem. Res. 58 (19) (2019) 8279–8289. [17] M. Breitbach, D. Bathen, Influence of ultrasound on adsorption processes, Ultrason. Sonochem. 8 (3) (2001) 277–283. [18] D. Downarowicz, K. Ziętarska, Adsorption of propan-1-ol vapour on Sorbonorit 4 activated carbon–equilibrium and dynamic studies, Pol. J. Chem. Technol. 19 (4) (2017) 59–64. [19] Smallwood I. Solvent recovery handbook. Blackwell Science, Oxford,2002. [20] J. Nastaj, B. Ambrożek, Modeling of drying of gaseous mixtures in TSA system with fixed bed of solid desiccants, Dry. Technol. 30 (10) (2012) 1062–1071. [21] J.F. Nastaj, B. Ambrożek, J. Rudnicka, Simulation studies of a vacuum and temperature swing adsorption process for the removal of VOC from waste air streams, Int. Commun. Heat Mass Transf. 33 (1) (2006) 80–86. [22] D. Ko, M. Kim, I. Moon, D.K. Choi, Analysis of purge gas temperature in cyclic TSA process, Chem. Eng. Sci. 57 (1) (2002) 179–195. [23] Z.W. Han, D. Wang, P. Jiang, H. Sui, L. He, X.G. Li, Enhanced removal and recovery of binary mixture of n-butyl acetate and p-xylene by temperature swing-Vacuum pressure swing hybrid adsorption process, Process. Saf. Environ. Prot. 135 (2020) 273–281. [24] B. Ambrożek, K. Zwarycz-Makles, Theoretical and experimental studies of the recovery of volatile organic compounds from waste air streams in the thermal swing adsorption system with closed-loop regeneration of adsorbent, Energy Convers. Manag. 85 (2014) 646–654.http://dx.doi.org/10.1016/j.enconman.2014.03.055 [25] H. Sui, H.X. Liu, P. An, L. He, X.G. Li, S. Cong, Application of silica gel in removing high concentrations toluene vapor by adsorption and desorption process, J. Taiwan Inst. Chem. Eng. 74 (2017) 218–224.http://dx.doi.org/10.1016/j.jtice.2017.02.019http://dx.doi.org/10.1016/j.jtice.2017.02.019 [26] M.-Y. Jung, S.-S. Suh, Effects of operating conditions on adsorption and desorption of benzene in TSA process using activated carbon and zeolite 13X, Appl. Chem. Eng. 29(5) (2018) 594-603. [27] R. Talmoudi, A. AbdelJaoued, M.H. Chahbani, Dynamic study of VSA and TSA processes for VOCs removal from air, Int. J. Chem. Eng. 2018 (2018) 2316827. [28] R. Z. Wang, Z. Z. Xia, L. W. Wang, Z. S. Lu, S.L. Li, T.X. Li, J. Y. Wu, S. He, Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy.Energy 36(9) (2011) 5425-5439. [29] Cortés FB, Chejne F, Mejía JM, Londoño CA, Mathematical model of the sorption phenomenon of methanol in activated coal. Energy Convers Manage. 50 (2009) 1295-1303. [30] T. Dobre, O.C. Pârvulescu, A. Jacquemet, V.A. Ion, Adsorption and thermal desorption of volatile organic compounds in a fixed bed–experimental and modeling, Chem. Eng. Commun. 203 (12) (2016) 1554–1561. [31] B. Ambrożek, The simulation of cyclic thermal swing adsorption (TSA) process,In: Modelling Dynamics in Processes and Systems,Springer, Berlin, (2009). [32] J.M. Schork, J.R. Fair, Parametric analysis of thermal regeneration of adsorption beds, Ind. Eng. Chem. Res. 27 (3) (1988) 457–469. [33] C.C. Huang, J.R. Fair, Study of the adsorption and desorption of multiple adsorbates in a fixed bed, Aiche J. 34 (11) (1988) 1861–1877. [34] J.H. Yun, D.K. Choi, H. Moon, Benzene adsorption and hot purge regeneration in activated carbon beds, Chem. Eng. Sci. 55 (23) (2000) 5857–5872.http://dx.doi.org/10.1016/S0009-2509(00)00189-5http://dx.doi.org/10.1016/S0009-2509(00)00189-5 [35] A. Jareteg, D. Maggiolo, H. Thunman, S. Sasic, H. Ström, Investigation of steam regeneration strategies for industrial-scale temperature-swing adsorption of benzene on activated carbon, Chem. Eng. Process. Process. Intensif. 167 (2021) 108546. [36] T. Yamaguchi, K. Aoki, M. Sakurai, H. Kameyama, Adsorption and desorption of low-content toluene–ethyl acetate gas mixtures on fixed-bed activated carbon for removal and concentration by TSA, KAGAKU KOGAKU RONBUNSHU 40 (1) (2014) 18–26. [37] P.K. Sharma, P.C. Wankat, Solvent recovery by steamless temperature swing carbon adsorption processes, Ind. Eng. Chem. Res. 49 (22) (2010) 11602–11613. 10.1021/ie1008019 [38] N. Jiang, Y.H. Shen, B. Liu, D.H. Zhang, Z.L. Tang, G.B. Li, B. Fu, CO2 capture from dry flue gas by means of VPSA, TSA and TVSA, J. CO2 Util. 35 (2020) 153–168. [39] Y.H. Yang, Y.S. Chen, Z.F. Xu, L. Wang, P.K. Zhang, A three-bed six-step TSA cycle with heat carrier gas recycling and its model-based performance assessment for gas drying, Sep. Purif. Technol. 237 (2020) 116335. [40] D. Ko, I. Moon, D.K. Choi, Analysis of the contact time in a cyclic thermal swing adsorption process, Ind. Eng. Chem. Res. 41 (6) (2002) 1603–1615. |