[1] K. Jähnisch, V. Hessel, H. Löwe, M. Baerns, Chemistry in microstructured reactors, Angew. Chem. Int. Ed. 43 (4) (2004) 406–446. [2] G.J. Harmsen, Reactive distillation: The front-runner of industrial process intensification, Chem. Eng. Process. Process.Intensif. 46 (9) (2007) 774–780. [3] T.T. Guan, Q. Yan, L.Z. Wan, S.H. Zhang, L.H. Xu, J.L. Wang, J.X. Yun, Liquid–liquid flow patterns and slug characteristics in cross-shaped square microchannel for cryogel beads preparation, Chem. Eng. Res. Des. 148 (2019) 312–320. [4] A. MohdLaziz, K. KuShaari, B. Azeem, S. Yusup, J. Chin, J. Denecke, Rapid production of biodiesel in a microchannel reactor at room temperature by enhancement of mixing behaviour in methanol phase using volume of fluid model, Chem. Eng. Sci. 219 (2020) 115532. [5] M. Kashid, L. Kiwi-Minsker, Quantitative prediction of flow patterns in liquid–liquid flow in micro-capillaries, Chem. Eng. Process.Process. Intensif. 50 (10) (2011) 972–978. [6] J. Jovanović, E.V. Rebrov, T.A.X. Nijhuis, M.T. Kreutzer, V. Hessel, J.C. Schouten, Liquid–liquid flow in a capillary microreactor: Hydrodynamic flow patterns and extraction performance, Ind. Eng. Chem. Res. 51 (2) (2012) 1015–1026. [7] Y.C. Zhao, G.W. Chen, Q. Yuan, Liquid–liquid two-phase flow patterns in a rectangular microchannel, AIChE J. 52 (12) (2006) 4052–4060. [8] S.K.R. Cherlo, S. Kariveti, S. Pushpavanam, Experimental and numerical investigations of two-phase (liquid-liquid) flow behavior in rectangular microchannels, Ind. Eng. Chem. Res. 49 (2) (2010) 893–899. [9] J.H. Xu, G.S. Luo, S.W. Li, G.G. Chen, Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties, Lab Chip 6 (1) (2006) 131–136. [10] T.T. Fu, L.J. Wei, C.Y. Zhu, Y.G. Ma, Flow patterns of liquid–liquid two-phase flow in non-Newtonian fluids in rectangular microchannels, Chem. Eng. Process. Process. Intensif. 91 (2015) 114–120. [11] M. Darekar, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy, Liquid–liquid two-phase flow patterns in Y-Junction microchannels, Ind. Eng. Chem. Res. 56 (42) (2017) 12215–12226. [12] Z. Wu, Z. Cao, B. Sundén, Liquid–liquid flow patterns and slug hydrodynamics in square microchannels of cross-shaped junctions, Chem. Eng. Sci. 174 (2017) 56–66. [13] H. Foroughi, M. Kawaji, Viscous oil–water flows in a microchannel initially saturated with oil: Flow patterns and pressure drop characteristics, Int. J. Multiph. Flow 37 (9) (2011) 1147–1155. [14] W.J. Lan, S.W. Li, G.S. Luo, Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel, Chem. Eng. Sci. 134 (2015) 76–85. [15] Y.R. Yin, C.Y. Zhu, T.T. Fu, Y.G. Ma, K. Wang, G.S. Luo, Enhancement effect and mechanism of gas–liquid mass transfer by baffles embedded in the microchannel, Chem. Eng. Sci. 201 (2019) 264–273. [16] R.K. Verma, S. Ghosh, Effect of phase properties on liquid–liquid two-phase flow patterns and pressure drop in serpentine mini geometry, Chem. Eng. J. 397 (2020) 125443. [17] H.C.Lv, Z.R. Yang, J. Zhang, G. Qian, X.Z. Duan, Z.M. Shu, X.G. Zhou, Liquid flow and mass transfer behaviors in a butterfly-shaped microreactor, Micromachines 12 (8) (2021) 883. [18] S. Haase, D.Y. Murzin, T. Salmi, Review on hydrodynamics and mass transfer in minichannel wall reactors with gas–liquid Taylor flow, Chem. Eng. Res. Des. 113 (2016) 304–329. [19] F. Shehzad, I.A. Hussein, M.S. Kamal, W. Ahmad, A.S. Sultan, M.S. Nasser, Polymeric surfactants and emerging alternatives used in the demulsification of produced water: A review, Polym. Rev. 58 (1) (2018) 63–101. [20] A.A. Yagodnitsyna, A.V. Kovalev, A.V. Bilsky, Flow patterns of immiscible liquid–liquid flow in a rectangular microchannel with T-junction, Chem. Eng. J. 303 (2016) 547–554. [21] A. Ghaini, A. Mescher, D.W. Agar, Hydrodynamic studies of liquid–liquid slug flows in circular microchannels, Chem. Eng. Sci. 66 (6) (2011) 1168–1178. [22] M.N. Kashid, D.W. Agar, S. Turek, CFD modelling of mass transfer with and without chemical reaction in the liquid–liquid slug flow microreactor, Chem. Eng. Sci. 62 (18–20) (2007) 5102–5109. [23] A. Abdollahi, S.E. Norris, R.N. Sharma, Pressure drop and film thickness of liquid–liquid Taylor flow in square microchannels, Int. J. Heat Mass Transf. 156 (2020) 119802. [24] Q. Li, P. Angeli, Experimental and numerical hydrodynamic studies of ionic liquid–aqueous plug flow in small channels, Chem. Eng. J. 328 (2017) 717–736. [25] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1) (1981) 201–225. [26] J.U.Brackbill, D.B.Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335–354. [27] R. Gupta, D.F. Fletcher, B.S. Haynes, On the CFD modelling of Taylor flow in microchannels, Chem. Eng. Sci. 64 (12) (2009) 2941–2950. [28] P. Desir, T.Y. Chen, M. Bracconi, B. Saha, M. Maestri, D.G. Vlachos, Experiments and computations of microfluidic liquid–liquid flow patterns, React. Chem. Eng. 5 (1) (2020) 39–50. [29] J.Y. Qian, X.J. Li, Z. Wu, Z.J.Jin, B. Sunden, A comprehensive review on liquid–liquid two-phase flow in microchannel: Flow pattern and mass transfer, Microfluid. Nanofluid. 23 (10) (2019) 1–30. [30] X. Chao, F.S. Xu, C.Q. Yao, T.T. Liu, G.W. Chen, CFD simulation of internal flow and mixing within droplets in a T-junction microchannel, Ind. Eng. Chem. Res. 60 (16) (2021) 6038–6047. [31] A.S. Utada, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz, Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett. 99 (9) (2007) 094502. [32] Z. Cao, Z. Wu, B. Sundén, Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels, Chem. Eng. J. 344 (2018) 604–615. [33] Z. Wu, Z. Cao, B. Sunden, Flow patterns and slug scaling of liquid–liquid flow in square microchannels, Int. J. Multiph. Flow 112 (2019) 27–39. [34] S.G. Sontti, A. Atta, Numerical insights on controlled droplet formation in a microfluidic flow-focusing device, Ind. Eng. Chem. Res. 59 (9) (2020) 3702–3716. |