[1] H.H. Zeng, X.Y. Liu, F.B. Chen, Z.G. Chen, X.L. Fan, W. Lau, Single atoms on a nitrogen-doped boron phosphide monolayer: A new promising bifunctional electrocatalyst for ORR and OER, ACS Appl. Mater. Interfaces 12 (47) (2020) 52549–52559. [2] W. Liang, J.X. Chen, Y.W. Liu, S.L. Chen, Density-functional-theory calculation analysis of active sites for four-electron Reduction of O2 on Fe/N-doped graphene, ACS Catal. 4 (11) (2014) 4170–4177. [3] H. Wan, T.M. Østergaard, L. Arnarson, J. Rossmeisl, Climbing the 3D volcano for the oxygen reduction reaction using porphyrin motifs, ACS Sustainable Chem. Eng. 7 (1) (2019) 611–617. [4] D. Jang, S. Lee, Y. Shin, S. Ohn, S. Park, D. Lim, G. Park, S. Park, Ni–O4 species anchored on N-doped graphene-based materials as molecular entities and electrocatalytic performances for oxygen reduction reaction, Solid State Sci. 74 (2017) 56–61. [5] W.P. Ni, Y. Gao, Y. Zhang, H.A. Younus, X.G. Guo, C. Ma, Y. Zhang, J.F. Duan, J.H. Zhang, S.G. Zhang, O-doping boosts the electrochemical oxygen reduction activity of a single Fe site in hydrophilic carbon with deep mesopores, ACS Appl. Mater. Interfaces 11 (49) (2019) 45825–45831. [6] Y. Gao, Z.W. Cai, X.C. Wu, Z.L. Lv, P. Wu, C.X. Cai, Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations, ACS Catal. 8 (11) (2018) 10364–10374. [7] P.Z. Chen, T.P. Zhou, L.L. Xing, K. Xu, Y. Tong, H. Xie, L.D. Zhang, W.S. Yan, W.S. Chu, C.Z. Wu, Y. Xie, Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions, Angew. Chem. Int. Ed. 56 (2) (2017) 610–614. [8] J.T. Zhang, L.M. Dai, Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction, ACS Catal. 5 (12) (2015) 7244–7253. [9] L.L. Chai, Z.Y. Hu, X. Wang, L.J. Zhang, T.T. Li, Y. Hu, J.Q. Pan, J.J. Qian, S.M. Huang, Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell, Carbon 174 (2021) 531–539. [10] D. Banham, S.Y. Ye, K.T. Pei, J.I. Ozaki, T. Kishimoto, Y. Imashiro, A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells, J. Power Sources 285 (2015) 334–348. [11] K. Jiang, H.T. Wang, Electrocatalysis over graphene-defect-coordinated transition-metal single-atom catalysts, Chem 4 (2) (2018) 194–195. [12] H.L. Fei, J.C. Dong, D.L. Chen, T.D. Hu, X.D. Duan, I. Shakir, Y. Huang, X.F. Duan, Single atom electrocatalysts supported on graphene or graphene-like carbons, Chem. Soc. Rev. 48 (20) (2019) 5207–5241. [13] M.D. Hossain, Z.J. Liu, M.H. Zhuang, X.X. Yan, G.L. Xu, C.A. Gadre, A. Tyagi, I.H. Abidi, C.-J. Sun, H. Wong, A. Guda, Y.F. Hao, X.Q. Pan, K. Amine, Z.T. Luo, Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction, Adv. Energy Mater. 9 (10) (2019) 1803689. [14] D.N. Zhou, X.Y. Li, H.S. Shang, F.J. Qin, W.X. Chen, Atomic regulation of metal–organic framework derived carbon-based single-atom catalysts for the electrochemical CO2 reduction reaction, J. Mater. Chem. A 9 (41) (2021) 23382–23418. [15] S. Seok, M. Choi, Y. Lee, D. Jang, Y. Shin, Y.-H. Kim, C. Jo, S. Park, Ni nanoparticles on Ni core/N-doped carbon shell heterostructures for electrocatalytic oxygen evolution, ACS Appl. Nano Mater. 4 (9) (2021) 9418–9429. [16] L.N. Wang, J.W. Zhang, L.R. Zheng, J.R. Yang, Y.C. Li, X. Wan, X.F. Liu, X.X. Zhang, R.H. Yu, J.L. Shui, Carbon black-supported FM–N–C (FM = Fe, Co, and Ni) single-atom catalysts synthesized by the self-catalysis of oxygen-coordinated ferrous metal atoms, J. Mater. Chem. A 8 (26) (2020) 13166–13172. [17] C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M–N–C single-atom catalysts for the oxygen reduction reaction, Angew. Chem. Int. Ed. 60 (9) (2020) 4448–4463. [18] M. Khalid, P.A. Bhardwaj, A.M.B. Honorato, H. Varela, Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxygen reduction, oxygen evolution, and hydrogen evolution reactions, Catal. Sci. Technol. 10 (19) (2020) 6420–6448. [19] H. Xu, D. Wang, P.X. Yang, A.M. Liu, R.P. Li, Y. Li, L.H. Xiao, X.F. Ren, J.Q. Zhang, M.Z. An, Atomically dispersed M–N–C catalysts for the oxygen reduction reaction, J. Mater. Chem. A 8 (44) (2020) 23187–23201. [20] H.J. Wu, C.Z. Guo, J.Q. Li, Z.L. Ma, Q.Y. Feng, C.G. Chen, A graphene-based electrocatalyst Co-doped with nitrogen and cobalt for oxygen reduction reaction, Int. J. Hydrog. Energy 41 (45) (2016) 20494–20501. [21] Q. Yang, Y. Jia, F.F. Wei, L.Z. Zhuang, D.J. Yang, J.Z. Liu, X. Wang, S. Lin, P. Yuan, X.D. Yao, Understanding the activity of Co–N4–xCx in atomic metal catalysts for oxygen reduction catalysis, Angew. Chem. Int. Ed. 59 (15) (2020) 6122–6127. [22] P.Q. Yin, T. Yao, Y.E. Wu, L.R. Zheng, Y. Lin, W. Liu, H.X. Ju, J.F. Zhu, X. Hong, Z.X. Deng, G. Zhou, S.Q. Wei, Y.D. Li, Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts, Angew. Chem. Int. Ed. 55 (36) (2016) 10800–10805. [23] F. Wu, C. Pan, C.T. He, Y.H. Han, W.J. Ma, H. Wei, W.L. Ji, W.X. Chen, J.J. Mao, P. Yu, D.S. Wang, L.Q. Mao, Y.D. Li, Single-atom Co–N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing, J. Am. Chem. Soc. 142 (39) (2020) 16861–16867. [24] Z. Xue, X.Y. Zhang, J.Q. Qin, R.P. Liu, TMN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR, J. Energy Chem. 55 (2021) 437–443. [25] X.L. Zhang, Z.X. Yang, Z.S. Lu, W.C. Wang, Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation, Carbon 130 (2018) 112–119. [26] J.C. Zhang, H.B. Yang, B. Liu, Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review, Adv. Energy Mater. 11 (3) (2020) 2002473. [27] T. Sun, S. Mitchell, J. Li, P. Lyu, X.B. Wu, J. Perez-Ramirez, J. Lu, Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions, Adv. Mater. 33 (5) (2021) 2003075. [28] D. Jang, Y. Lee, Y. Shin, S. Park, C. Jo, Y.H. Kim, S. Park, Coordination structure of Jacobsen catalyst with N-modified graphene and their electrocatalytic properties for reducing oxygen molecules, Appl. Catal. B: Environ. 263 (2020) 118337. [29] S. Kim, D. Jang, J. Lim, J. Oh, S.O. Kim, S. Park, Cobalt-based active species molecularly immobilized on carbon nanotubes for the oxygen reduction reaction, ChemSusChem 10 (17) (2017) 3473–3481. [30] J. Han, Y.J. Sa, Y. Shim, M. Choi, N. Park, S.H. Joo, S. Park, Coordination chemistry of [Co(acac)2] with N-doped graphene: Implications for oxygen reduction reaction reactivity of organometallic Co–O4–N species, Angew. Chem. Int. Ed. 54 (43) (2015) 12622–12626. [31] S.Z. Liu, L. Cheng, K. Li, C. Yin, H. Tang, Y. Wang, Z.J. Wu, RuN4 doped graphene oxide, a highly efficient bifunctional catalyst for oxygen reduction and CO2 reduction from computational study, ACS Sustainable Chem. Eng. 7 (9) (2019) 8136–8144. [32] Y.H. Han, Y.G. Wang, R.R. Xu, W.X. Chen, L.R. Zheng, A.J. Han, Y.Q. Zhu, J. Zhang, H.B. Zhang, J. Luo, C. Chen, Q. Peng, D.S. Wang, Y.D. Li, Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal, Energy Environ. Sci. 11 (9) (2018) 2348–2352. [33] X.F. Zhu, X. Tan, K.H. Wu, C.L. Chiang, Y.C. Lin, Y.G. Lin, D.W. Wang, S. Smith, X.Y. Lu, R. Amal, N, P Co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis, J. Mater. Chem. A 7 (24) (2019) 14732–14742. [34] A.B. Anderson, E.F. Holby, Pathways for O2 electroreduction over substitutional FeN4, HOFeN4, and OFeN4 in graphene bulk sites: Critical evaluation of overpotential predictions using LGER and CHE models, J. Phys. Chem. C 123 (30) (2019) 18398–18409. [35] J. Sun, Y.H. Fang, Z.P. Liu, Electrocatalytic oxygen reduction kinetics on Fe-center of nitrogen-doped graphene, Phys. Chem. Chem. Phys. 16 (27) (2014) 13733–13740. [36] C.H. Fu, L.X. Luo, L.J. Yang, S.Y. Shen, X.H. Yan, J.W. Yin, G.H. Wei, J.L. Zhang, An in-depth theoretical exploration of influences of non-metal-elements doping on the ORR performance of Co–gN4, ChemCatChem 13 (9) (2021) 2303–2310. [37] X. Chen, S.H. Huang, F.H. Sun, N.J. Lai, Modifications of metal and ligand to modulate the oxygen reduction reaction activity of two-dimensional MOF catalysts, J. Phys. Chem. C 124 (2) (2020) 1413–1420. [38] Y. Singh, S. Back, Y. Jung, Activating transition metal dichalcogenides by substitutional nitrogen-doping for potential ORR electrocatalysts, ChemElectroChem 5 (24) (2018) 4029–4035. [39] Z. Liang, M. Luo, M. Chen, C. Liu, S.G. Peera, X. Qi, J. Liu, U.P. Kumar, T.L.T. Liang, Evaluating the catalytic activity of transition metal dimers for the oxygen reduction reaction, J. Colloid Interface. Sci. 568 (2020) 54–62. [40] Y.N. Meng, C. Yin, K. Li, H. Tang, Y. Wang, Z.J. Wu, Improved oxygen reduction activity in heteronuclear FeCo-codoped graphene: A theoretical study, ACS Sustain. Chem. Eng. 7 (20) (2019) 17273–17281. [41] X. Chen, S.J. Chen, J.Y. Wang, Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory, Appl. Surf. Sci. 379 (2016) 291–295. [42] B.B. Xiao, H.Y. Liu, L. Yang, E.H. Song, X.B. Jiang, Q. Jiang, Design of effective graphene with the TM/O moiety for the oxygen electrode reaction, ACS Appl. Energy Mater. 3 (1) (2020) 260–267. [43] L. Yang, S.H. Feng, W.H. Zhu, Tuning nitrate electroreduction activity via an equilibrium adsorption strategy: A computational study, J. Phys. Chem. Lett. 13 (7) (2022) 1726–1733. [44] X.L. Zhang, Z.S. Lu, Z.X. Yang, The mechanism of oxygen reduction reaction on CoN4 embedded graphene: A combined kinetic and atomistic thermodynamic study, Int. J. Hydrog. Energ. 41 (46) (2016) 21212–21220. [45] S. Kumar, Ajay, Quasi-particle spectrum and density of electronic states in AA- and AB-stacked bilayer graphene, Eur. Phys. J. B 86 (3) (2013) 111. [46] A.L. Rakhmanov, A.V. Rozhkov, A.O. Sboychakov, F. Nori, Instabilities of the AA-stacked graphene bilayer, Phys. Rev. Lett. 109 (20) (2012) 206801. [47] J. Zhang, Z.P. Zhou, F. Wang, Y.F. Li, Y. Jing, Two-dimensional metal hexahydroxybenzene frameworks as promising electrocatalysts for an oxygen reduction reaction, ACS Sustainable Chem. Eng. 8 (19) (2020) 7472–7479. [48] A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction, Chem. Rev. 118 (5) (2018) 2302–2312. [49] L. Li, R. Huang, X.R. Cao, Y.H. Wen, Computational screening of efficient graphene-supported transition metal single atom catalysts toward the oxygen reduction reaction, J. Mater. Chem. A 8 (37) (2020) 19319–19327. [50] B.B. Xiao, L. Yang, H.Y. Liu, X.B. Jiang, B. Aleksandr, E.H. Song, Q. Jiang, Designing fluorographene with FeN4 and CoN4 moieties for oxygen electrode reaction: A density functional theory study, Appl. Surf. Sci. 537(2021) 147846. [51] P. Zhang, X.L. Hou, J.L. Mi, Y.Q. He, L. Lin, Q. Jiang, M.D. Dong, From two-dimension to one-dimension: The curvature effect of silicon-doped graphene and carbon nanotubes for oxygen reduction reaction, Phys. Chem. Chem. Phys. 16 (33) (2014) 17479–17486. [52] X.L. Zhang, Z.S. Lu, Z.M. Fu, Y.N. Tang, D.W. Ma, Z.X. Yang, The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study, J. Power Sources 276 (2015) 222–229. [53] W. Zhang, K.K. Mao, X.C. Zeng, B-doped MnN4–G nanosheets as bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions, ACS Sustainable Chem. Eng. 7 (22) (2019) 18711–18717. [54] Z. Zhao, H.X. Xu, Z.Y. Feng, Y.Q. Zhang, M.S. Cui, D.P. Cao, D.J. Cheng, Design of high-performance Co-based alloy nanocatalysts for the oxygen reduction reaction, Chem. Eur. J. 26 (18) (2020) 4128–4135. [55] R.M. Hu, Y.C. Li, Q.W. Zeng, J.X. Shang, Role of active sites in N-coordinated Fe–Co dual-metal doped graphene for oxygen reduction and evolution reactions: A theoretical insight, Appl. Surf. Sci. 525 (2020) 146588. [56] Y. Xiao, W.B. Zhang, High-throughput calculation investigations on the electrocatalytic activity of codoped single metal-nitrogen embedded in graphene for ORR mechanism, Electrocatalysis 11 (4) (2020) 393–404. [57] C. Shang, Z.P. Liu, Origin and activity of gold nanoparticles as aerobic oxidation catalysts in aqueous solution, J. Am. Chem. Soc. 133 (25) (2011) 9938–9947. [58] W.J. Qi, W.Q. Huang, J.T. Niu, B. Zhang, Z.G. Zhang, W.L. Li, The role of S in the Co–N–S–C catalysis system towards the ORR for proton exchange membrane fuel cells, Appl. Surf. Sci. 540 (2021) 148325. [59] B.B. Xiao, Y.F. Zhu, X.Y. Lang, Z. Wen, Q. Jiang, Al13@Pt42 core–shell cluster for oxygen reduction reaction, Sci. Rep. 4 (2015) 5205. [60] B.B. Xiao, H.Y. Liu, X.B. Jiang, Z.D. Yu, Q. Jiang, A bifunctional two dimensional TM3(HHTP)2 monolayer and its variations for oxygen electrode reactions, RSC Adv. 7 (86) (2017) 54332–54340. |