[1] H.R. Yue, Y.J. Zhao, X.B. Ma, J.L. Gong, Ethylene glycol: properties, synthesis, and applications, Chem. Soc. Rev. 41 (11) (2012) 4218–4244. [2] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107 (6) (2007) 2411–2502. [3] R.A. Kerr, R.F. Service, What can replace cheap oil: and when? Science 309 (5731) (2005) 101.https://doi.org/10.1126/science.309.5731.101 [4] Y.N. Sun, Q.X. Ma, Q.J. Ge, J. Sun, Tunable synthesis of ethanol or methyl acetate via dimethyl oxalate hydrogenation on confined iron catalysts, ACS Catal. 11 (8) (2021) 4908–4919. [5] J.L. Gong, H.R. Yue, Y.J. Zhao, S. Zhao, L. Zhao, J. Lv, S.P. Wang, X.B. Ma, Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134 (34) (2012) 13922–13925. [6] L. Zhang, L.P. Han, G.F. Zhao, R.J. Chai, Q.F. Zhang, Y. Liu, Y. Lu, Structured Pd–Au/Cu-fiber catalyst for gas-phase hydrogenolysis of dimethyl oxalate to ethylene glycol, Chem. Commun. 51 (52) (2015) 10547–10550.https://doi.org/10.1039/c5cc03009a [7] J. Goldemberg, Ethanol for a sustainable energy future, Science 315 (5813) (2007) 808–810.https://pubmed.ncbi.nlm.nih.gov/17289989/ [8] M.L. Wang, D.W. Yao, A.T. Li, Y.W. Yang, J. Lv, S.Y. Huang, Y. Wang, X.B. Ma, Enhanced selectivity and stability of Cu/SiO2 catalysts for dimethyl oxalate hydrogenation to ethylene glycol by using silane coupling agents for surface modification, Ind. Eng. Chem. Res. 59 (20) (2020) 9414–9422. [9] Y.J. Zhao, H.H. Zhang, Y.X. Xu, S.N. Wang, Y. Xu, S.P. Wang, X.B. Ma, Interface tuning of cu+/Cu0 by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst, J. Energy Chem. 49 (2020) 248–256. [10] G. Giorgianni, C. Mebrahtu, S. Perathoner, G. Centi, S. Abate, Hydrogenation of dimethyl oxalate to ethylene glycol on Cu/SiO2 catalysts prepared by a deposition-decomposition method: Optimization of the operating conditions and pre-reduction procedure, Catal. Today 390-391 (2022) 343–353. [11] Y.X. Xu, L.X. Kong, H.J. Huang, H. Wang, X.F. Wang, S.P. Wang, Y.J. Zhao, X.B. Ma, Promotional effect of indium on Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Sci. Technol. 11 (20) (2021) 6854–6865. [12] R.P. Ye, L. Lin, C.C. Chen, J.X. Yang, F. Li, X. Zhang, D.J. Li, Y.Y. Qin, Z.F. Zhou, Y.G. Yao, Synthesis of robust MOF-derived Cu/SiO2 catalyst with low copper loading via Sol–gel method for the dimethyl oxalate hydrogenation reaction, ACS Catal. 8 (4) (2018) 3382–3394. [13] P.P. Ai, M.H. Tan, P. Reubroycharoen, Y. Wang, X.B. Feng, G.G. Liu, G.H. Yang, N. Tsubaki, Probing the promotional roles of cerium in the structure and performance of Cu/SiO2 catalysts for ethanol production, Catal. Sci. Technol. 8 (24) (2018) 6441–6451. [14] R.P. Ye, L. Lin, L.C. Wang, D. Ding, Z.F. Zhou, P.B. Pan, Z.H. Xu, J. Liu, H. Adidharma, M. Radosz, M.H. Fan, Y.G. Yao, Perspectives on the active sites and catalyst design for the hydrogenation of dimethyl oxalate, ACS Catal. 10 (8) (2020) 4465–4490. [15] W.Q. Yan, J.B. Zhang, R.J. Zhou, Y.Q. Cao, Y.A. Zhu, J.H. Zhou, Z.J. Sui, W. Li, D. Chen, X.G. Zhou, Identification of synergistic actions between Cu0 and cu+ sites in hydrogenation of dimethyl oxalate from microkinetic analysis, Ind. Eng. Chem. Res. 59 (52) (2020) 22451–22459. [16] C.C. Chen, L. Lin, R.P. Ye, L. Huang, L.B. Zhu, Y.Y. Huang, Y.Y. Qin, Y.G. Yao, Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation, Fuel 290 (2021) 120083. [17] H.R. Yue, Y.J. Zhao, S. Zhao, B. Wang, X.B. Ma, J.L. Gong, A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions, Nat. Commun. 4 (2013) 2339. [18] R.P. Ye, L. Lin, Q.H. Li, Z.F. Zhou, T.T. Wang, C.K. Russell, H. Adidharma, Z.H. Xu, Y.G. Yao, M.H. Fan, Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds, Catal. Sci. Technol. 8 (14) (2018) 3428–3449. [19] J.W. Zheng, J.F. Zhou, H.Q. Lin, X.P. Duan, C.T. Williams, Y.Z. Yuan, CO-mediated deactivation mechanism of SiO2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol, J. Phys. Chem. C 119 (24) (2015) 13758–13766. [20] J. Ding, T. Popa, J.K. Tang, K.A.M. Gasem, M.H. Fan, Q. Zhong, Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol, Appl. Catal. B Environ. 209 (2017) 530–542. [21] Y.J. Zhao, Y.Q. Zhang, Y. Wang, J. Zhang, Y. Xu, S.P. Wang, X.B. Ma, Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation, Appl. Catal. A Gen. 539 (2017) 59–69. [22] C. Wen, Y.Y. Cui, W.L. Dai, S.H. Xie, K.N. Fan, Solvent feedstock effect: the insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Commun. (Camb) 49 (45) (2013) 5195–5197. [23] P.P. Ai, M.H. Tan, Y. Ishikuro, Y. Hosoi, G.H. Yang, Y. Yoneyama, N. Tsubaki, Design of an autoreduced copper in carbon nanotube catalyst to realize the precisely selective hydrogenation of dimethyl oxalate, ChemCatChem 9 (6) (2017) 1067–1075. [24] Z.Q. Jiang, Z.J. Jiang, T. Maiyalagan, A. Manthiram, Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions, J. Mater. Chem. A 4 (16) (2016) 5877–5889. [25] H. Wang, Y. Shao, S.L. Mei, Y. Lu, M. Zhang, J.K. Sun, K. Matyjaszewski, M. Antonietti, J.Y. Yuan, Polymer-derived heteroatom-doped porous carbon materials, Chem. Rev. 120 (17) (2020) 9363–9419. [26] Y.R. Sun, C.Y. Du, M.C. An, L. Du, Q. Tan, C.T. Liu, Y.Z. Gao, G.P. Yin, Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction, J. Power Sources 300 (2015) 245–253. [27] P.P. Ai, M.H. Tan, N. Yamane, G.G. Liu, R.G. Fan, G.H. Yang, Y. Yoneyama, R.Q. Yang, N. Tsubaki, Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol, Chem. Eur. J. 23 (34) (2017) 8252–8261. [28] Y.S. Yun, H. Park, D. Yun, C.K. Song, T.Y. Kim, K.R. Lee, Y. Kim, J.W. Han, J. Yi, Tuning the electronic state of metal/graphene catalysts for the control of catalytic activity via N- and B-doping into graphene, Chem. Commun. 54 (52) (2018) 7147–7150. [29] P. Joshi, H.H. Huang, R. Yadav, M. Hara, M. Yoshimura, Boron-doped graphene as electrocatalytic support for iridium oxide for oxygen evolution reaction, Catal. Sci. Technol. 10 (19) (2020) 6599–6610. [30] A.Y. Yin, J.W. Qu, X.Y. Guo, W.L. Dai, K.N. Fan, The influence of B-doping on the catalytic performance of Cu/HMS catalyst for the hydrogenation of dimethyloxalate, Appl. Catal. A Gen. 400 (1–2) (2011) 39–47. [31] Z. He, H.Q. Lin, P. He, Y.Z. Yuan, Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 277 (1) (2011) 54–63. [32] S. Zhao, H.R. Yue, Y.J. Zhao, B. Wang, Y.C. Geng, J. Lv, S.P. Wang, J.L. Gong, X.B. Ma, Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: enhanced stability with boron dopant, J. Catal. 297 (2013) 142–150. [33] G.A. Tiruye, D. Muñoz-Torrero, T. Berthold, J. Palma, M. Antonietti, N. Fechler, R. Marcilla, Functional porous carbon nanospheres from sustainable precursors for high performance supercapacitors, J. Mater. Chem. A 5 (31) (2017) 16263–16272. [34] H.N. Yang, W.J. Kim, Effect of boron-doping levels in Pt-B-graphene on the electrochemical properties and cell performance of high temperature proton exchange membrane fuel cells, Electrochimica Acta 209 (2016) 430–439. |