[1] R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, A. Hayyan, S. Ibrahim, Environmental application of nanotechnology: air, soil, and water, Environ. Sci. Pollut. Res. Int. 23 (14) (2016) 13754–13788. [2] I. Khan, M. Luo, L. Guo, S. Khan, C. Wang, A. Khan, M. Saeed, S. Zaman, K. Qi, Q.l. Liu, Enhanced visible-light photoactivities of porous LaFeO3 by synchronously doping Ni2+ and coupling TS-1 for CO2 reduction and 2,4,6-trinitrophenol degradation, Catalysis Science & Technology, 11 (2021) 6793-6803. [3] C.P. Xu, P.R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis, Chem. Soc. Rev. 48 (14) (2019) 3868–3902. [4] A. Zada, M. Khan, M.A. Khan, Q. Khan, A. Habibi-Yangjeh, A.L. Dang, M. Maqbool, Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts, Environ. Res. 195 (2021) 110742. [5] L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang, H. Wang, Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant, Applied Catalysis B: Environmental, 221 (2018) 715-725. [6] H.T. Fang, A.S. Oberoi, Z.Q. He, S.K. Khanal, H. Lu, Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism, Water Res. 191 (2021) 116808. [7] M. Adeel, M. Saeed, I. Khan, M. Muneer, N. Akram, Synthesis and characterization of co–ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange, ACS Omega 6 (2) (2021) 1426–1435. [8] D. Sana, S. Jalila, A comparative study of adsorption and regeneration with different agricultural wastes as adsorbents for the removal of methylene blue from aqueous solution, Chin. J. Chem. Eng. 25 (9) (2017) 1282–1287. [9] I. Khan, N. Sun, Y. Wang, Z.J. Li, Y. Qu, L.Q. Jing, Synthesis of SnO2/yolk-shell LaFeO3 nanocomposites as efficient visible-light photocatalysts for 2, 4-dichlorophenol degradation, Mater. Res. Bull. 127 (2020) 110857. [10] E.S. Massima Mouele, J.O. Tijani, O.O. Fatoba, L.F. Petrik, Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations: a critical review, Environ. Sci. Pollut. Res. Int. 22 (23) (2015) 18345–18362. [11] S. Zhang, P. Gu, R. Ma, C.Y. Luo, T. Wen, G. Zhao, W. Cheng, X. Wang, Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review, Catalysis Today, (2019). [12] S. Zhang, P.C. Gu, R. Ma, C.T. Luo, T. Wen, G.X. Zhao, W.C. Cheng, X.K. Wang, Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review, Catal. Today 335 (2019) 65–77. [13] I. Khan, N. Sun, Z.Q. Zhang, Z.J. Li, M. Humayun, S. Ali, Y. Qu, L.Q. Jing, Improved visible-light photoactivities of porous LaFeO3 by coupling with nanosized alkaline earth metal oxides and mechanism insight, Catal. Sci. Technol. 9 (12) (2019) 3149–3157. [14] X.Y. Chu, Y. Qu, A. Zada, L.L. Bai, Z.J. Li, F. Yang, L.N. Zhao, G.L. Zhang, X.J. Sun, Z.D. Yang, L.Q. Jing, Ultrathin phosphate-modulated co phthalocyanine/g-C 3 N 4 heterojunction photocatalysts with single co–N 4 (II) sites for efficient O 2 activation, Adv. Sci. 7 (16) (2020) 2001543. [15] I. Khan, S. Khan, J.Y. Chen, S.A. Shah, A.H. Yuan, Biological inspired green synthesis of TiO2 coupled g-C3N4 nanocomposites and its improved activities for sulfadiazine and bisphenol A degradation, J. Clust. Sci. (2022) 1–12. [16] I. Khan, M. Luo, S. Khan, H. Asghar, M. Saeed, S. Khan, A. Khan, M. Humayun, L. Guo, B. Shi, Green synthesis of SrO bridged LaFeO3/g-C3N4 nanocomposites for CO2 conversion and bisphenol A degradation with new insights into mechanism, Environmental Research, 207 (2022) 112650. [17] K. Zhao, I. Khan, K.Z. Qi, Y. Liu, A. Khataee, Ionic liquid assisted preparation of phosphorus-doped g-C3N4 photocatalyst for decomposition of emerging water pollutants, Mater. Chem. Phys. 253 (2020) 123322. [18] M. Humayun, H. Ullah, L. Shu, X. Ao, A.A. Tahir, C. Wang, W. Luo, Plasmon assisted highly efficient visible light catalytic CO2 reduction over the noble metal decorated Sr-incorporated g-C3N4, Nano Micro Lett. 13 (1) (2021) 1–18. [19] J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J. Nanobiotechnology 16 (2018) 84. [20] H.H. Duan, D.S. Wang, Y.D. Li, Green chemistry for nanoparticle synthesis, Chem. Soc. Rev. 44 (16) (2015) 5778–5792. [21] S. Singh, I.C. Maurya, A. Tiwari, P. Srivastava, L. Bahadur, Green synthesis of TiO2 nanoparticles using Citrus limon juice extract as a bio-capping agent for enhanced performance of dye-sensitized solar cells, Surfaces and Interfaces, 28 (2022) 101652. [22] N. Ain Samat, R. Md Nor, Sol-gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts, Ceram. Int. 39 (2013) S545–S548. [23] K.Z. Qi, W.X. Lv, I. Khan, S.Y. Liu, Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating, Chin. J. Catal. 41 (1) (2020) 114–121. [24] S.Y. Zhang, I. Khan, X.H. Qin, K.Z. Qi, Y. Liu, S.C. Bai, Construction of 1D Ag-AgBr/AlOOH plasmonic photocatalyst for degradation of tetracycline hydrochloride, Front. Chem. 8 (2020) 117. [25] M. Saeed, M. Usman, M. Ibrahim, A.U. Haq, I. Khan, H. Ijaz, F. Akram, Enhanced photo catalytic degradation of methyl orange using p–n Co3O4-TiO2 hetero-junction as catalyst, Int. J. Chem. React. Eng. 18 (5–6) (2020). [26] M. Humayun, A. Zada, Z.J. Li, M.Z. Xie, X.L. Zhang, Y. Qu, F. Raziq, L.Q. Jing, Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism, Appl. Catal. B Environ. 180 (2016) 219–226. [27] M. Saeed, I. Khan, M. Adeel, N. Akram, M. Muneer, Synthesis of a CoO–ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue, New J. Chem. 46 (5) (2022) 2224–2231. [28] I. Khan, M.S. Luo, L. Guo, S. Khan, S.A. Shah, I. Khan, A. Khan, C.J. Wang, B.H. Ai, S. Zaman, Synthesis of phosphate-bridged g-C3N4/LaFeO3 nanosheets Z-scheme nanocomposites as efficient visible photocatalysts for CO2 reduction and malachite green degradation, Appl. Catal. A Gen. 629 (2022) 118418. [29] N. Sun, Y. Qu, C.H. Yang, Z.D. Yang, R. Yan, W. E, Z.Q. Zhang, Z.J. Li, H.N. Li, I. Khan, R. Sun, L.Q. Jing, H.G. Fu, Efficiently photocatalytic degradation of monochlorophenol on in situ fabricated BiPO4/β-Bi2O3 heterojunction microspheres and O2-free hole-induced selective dechloridation conversion with H2 evolution, Appl. Catal. B Environ. 263 (2020) 118313. [30] H. Kumar, K. Bhardwaj, D.S. Dhanjal, E. Nepovimova, F. Ṣen, H. Regassa, R. Singh, R. Verma, V. Kumar, D. Kumar, S.K. Bhatia, K. Kuča, Fruit extract mediated green synthesis of metallic nanoparticles: a new avenue in pomology applications, Int. J. Mol. Sci. 21 (22) (2020) 8458. [31] Y. Humaira, Z. Amir, S.X. Liu, Surface plasmon resonance electron channeled through amorphous aluminum oxide bridged ZnO coupled g-C3N4 significantly promotes charge separation for pollutants degradation under visible light, J. Photochem. Photobiol. A Chem. 400 (2020) 112681. [32] W. Yaseen, M. Xie, B.A. Yusuf, Y.G. Xu, M. Rafiq, N. Ullah, P.Y. Zhou, X. Li, J.M. Xie, Hierarchical Co/MoO2@N-doped carbon nanosheets derived from waste lotus leaves for electrocatalytic water splitting, Int. J. Hydrog. Energy 47 (35) (2022) 15673–15686. [33] A. Nisar, M. Saeed, M. Muneer, M. Usman, I. Khan, Synthesis and characterization of ZnO decorated reduced graphene oxide (ZnO-rGO) and evaluation of its photocatalytic activity toward photodegradation of methylene blue, Environ. Sci. Pollut. Res. 29 (1) (2022) 418–430. [34] A. Nisar, M. Saeed, M. Usman, M. Muneer, M. Adeel, I. Khan, J. Akhtar, Kinetic modeling of ZnO-rGO catalyzed degradation of methylene blue, Int. J. Chem. Kinet. 52 (10) (2020) 645–654. [35] R. Mohammadi, H. Alamgholiloo, B. Gholipour, S. Rostamnia, S. Khaksar, M. Farajzadeh, M. Shokouhimehr, Visible-light-driven photocatalytic activity of ZnO/g-C3N4 heterojunction for the green synthesis of biologically interest small molecules of thiazolidinones, J. Photochem. Photobiol. A Chem. 402 (2020) 112786. [36] X. Li, H.P. Jiang, C.C. Ma, Z. Zhu, X.H. Song, H.Q. Wang, P.W. Huo, X.Y. Li, Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO, Appl. Catal. B Environ. 283 (2021) 119638. [37] D.R. Paul, S. Gautam, P. Panchal, S.P. Nehra, P. Choudhary, A. Sharma, ZnO-modified g-C3N4: a potential photocatalyst for environmental application, ACS Omega 5 (8) (2020) 3828–3838. [38] K.Z. Qi, A. Zada, Y. Yang, Q.Y. Chen, A. Khataee, Design of 2D–2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant, Res. Chem. Intermed. 46 (12) (2020) 5281–5295. [39] M. Humayun, Q.Y. Fu, Z.P. Zheng, H.L. Li, W. Luo, Improved visible-light catalytic activities of novel Au/P-doped g-C3N4 photocatalyst for solar fuel production and mechanism, Appl. Catal. A Gen. 568 (2018) 139–147. [40] S.A. Shah, I. Khan, A.H. Yuan, MoS 2 as a co-catalyst for photocatalytic hydrogen production: a mini review, Molecules 27 (10) (2022) 3289. [41] N. D, M. Humayun, D. Bhattacharyya, D.J. Fu, Hierarchical Sr-ZnO/g-C3N4 heterojunction with enhanced photocatalytic activities, J. Photochem. Photobiol. A Chem. 396 (2020) 112515. [42] Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S.M. Rezaei Darvishi, ZnO Photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using S-Doped ZnO nanoparticles under visible light radiation, Industrial & Engineering Chemistry Research, 59 (2020) 15894-15911. [43] A. Naseri, M. Samadi, A. Pourjavadi, S. Ramakrishna, A.Z. Moshfegh, Enhanced photocatalytic activity of ZnO/g-C3N4 nanofibers constituting carbonaceous species under simulated sunlight for organic dye removal, Ceram. Int. 47 (18) (2021) 26185–26196. [44] M. Gayathri, M. Sakar, E. Satheeshkumar, E. Sundaravadivel, Insights into the mechanism of ZnO/g–C3N4 nanocomposites toward photocatalytic degradation of multiple organic dyes, Journal of Materials Science: Materials in Electronics, 33 (2022) 9347-9357. [45] X.Q. Yan, H. An, Z.H. Chen, G.D. Yang, Significantly enhanced charge transfer efficiency and surface reaction on NiP2/g-C3N4 heterojunction for photocatalytic hydrogen evolution, Chin. J. Chem. Eng. 43 (2022) 31–39. [46] F. Guo, Z.H. Chen, X.L. Huang, L.W. Cao, X.F. Cheng, W.L. Shi, L.Z. Chen, Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis, Chin. J. Chem. Eng. 44 (2022) 157–168. [47] S.Y. Chen, Z.Y. Mu, R. Yan, X.L. Zhang, I. Khan, Z.J. Li, N. Sun, Q.Y. Zhang, L.Q. Jing, Improved photoactivities for CO2 conversion and phenol degradation of α-Fe2O3 nanoparticles by co-coupling nano-sized BiPO4 and CuO to modulate electrons, J. Alloys Compd. 800 (2019) 231–239. [48] Z. Lu, Y. Ling, X. Wang, S. Li, X. Ao, W. Wang, C. Li, W. Sun, T. Huang, Insight into the degradation of ciprofloxacin by medium-pressure UV-activated monochloramine process, Science of The Total Environment, 832 (2022) 154850. [49] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental, 31 (2001) 145-157. [50] M.A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, M.B. Akbar, Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity, Journal of Photochemistry and Photobiology A: Chemistry, 401 (2020) 112776. |