[1] L.M. Balster, E. Corporan, M.J. DeWitt, J.T. Edwards, J.S. Ervin, J.L. Graham, S.Y. Lee, S. Pal, D.K. Phelps, L.R. Rudnick, R.J. Santoro, H.H. Schobert, L.M. Shafer, R.C. Striebich, Z.J. West, G.R. Wilson, R. Woodward, S. Zabarnick, Development of an advanced, thermally stable, coal-based jet fuel, Fuel Process. Technol. 89 (4) (2008) 364–378. [2] L.Q. Maurice, H. Lander, T. Edwards, W.E. Harrison III, Advanced aviation fuels: a look ahead via a historical perspective, Fuel 80 (5) (2001) 747–756. [3] S.Y. Yuan, Z.Q. Liu, G.Z. Liu, High-gravity deoxygenation of jet fuels using rotating packed bed, Fuel 314 (2022) 123080. [4] L.J. Spadaccini, H. Huang, On-line fuel deoxygenation for coke suppression, J. Eng. Gas Turbines Power 125 (3) (2003) 686–692. [5] T.H. Jia, S. Gong, L. Pan, C. Deng, J.J. Zou, X.W. Zhang, Impact of deep hydrogenation on jet fuel oxidation and deposition, Fuel 264 (2020) 116843. [6] E.G. Jones, L.M. Balster, Impact of additives on the autoxidation of a thermally stable aviation fuel, Energy Fuels 11 (3) (1997) 610–614. [7] T.H. Jia, M.C. Zhao, L. Pan, C. Deng, J.J. Zou, X.W. Zhang, Effect of phenolic antioxidants on the thermal oxidation stability of high-energy-density fuel, Chem. Eng. Sci. 247 (2022) 117056. [8] T. Jia, X. Zhang, Y. Liu, S. Gong, C. Deng, L. Pan, J.J.Zou, A comprehensive review of the thermal oxidation stability of jet fuels. Chem. Eng. Sci. 229 (2021) 116157. [9] R. Shah, E.A. Haidasz, L. Valgimigli, D.A. Pratt, Unprecedented inhibition of hydrocarbon autoxidation by diarylamine radical-trapping antioxidants, J. Am. Chem. Soc. 137 (7) (2015) 2440–2443. [10] I. de M Figueredo, M.A. de S Rios, C.L. Cavalcante Jr, F.M.T. Luna, Effects of amine and phenolic based antioxidants on the stability of babassu biodiesel using rancimat and differential scanning calorimetry techniques, Ind. Eng. Chem. Res. 59 (1) (2020) 18–24. [11] H.N. Yuan, S.J. Yao, Y.R. You, G.N. Xiao, Q. You, Antioxidant activity of isothiocyanate extracts from broccoli, Chin. J. Chem. Eng. 18 (2) (2010) 312–321. [12] D. Borsato, J.R. de Moraes Cini, H.C. da Silva, R.L. Coppo, K.G. Angilelli, I. Moreira, E.C.R. Maia, Oxidation kinetics of biodiesel from soybean mixed with synthetic antioxidants BHA, BHT and TBHQ: determination of activation energy, Fuel Process. Technol. 127 (2014) 111–116. [13] J.F. Poon, D.A. Pratt, Recent insights on hydrogen atom transfer in the inhibition of hydrocarbon autoxidation, Acc. Chem. Res. 51 (9) (2018) 1996–2005. [14] E.A. Haidasz, R. Shah, D.A. Pratt, The catalytic mechanism of diarylamine radical-trapping antioxidants, J. Am. Chem. Soc. 136 (47) (2014) 16643–16650. [15] R.K. Jensen, S. Korcek, M. Zinbo, J.L. Gerlock. Regeneration of amine in catalytic inhibition of oxidation. J. Org. Chem.60 (1995) 5396-5400. [16] T.A.B.M. Bolsman, A.P. Blok, J.H.G. Frijns, Catalytic inhibition of hydrocarbon autoxidation by secondary amines and nitroxides, Recueil Des Travaux Chimiques Des Pays Bas 97 (12) (1978) 310–312. [17] S. Yu, Y. Wang, S. Wang, J.Zhu, S. Liu. The antioxidant activity and catalytic mechanism of Schiff base diphenylamines at elevated temperatures. Ind. Eng. Chem. Res. 59 (2019) 1031-1037. [18] J.J. Hanthorn, R. Amorati, L. Valgimigli, D.A. Pratt, The reactivity of air-stable pyridine- and pyrimidine-containing diarylamine antioxidants, J. Org. Chem. 77 (16) (2012) 6895–6907. [19] K.U. Ingold, D.A. Pratt, Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective, Chem. Rev. 114 (18) (2014) 9022–9046. [20] J.J. Hanthorn, L. Valgimigli, D.A. Pratt, Incorporation of ring nitrogens into diphenylamine antioxidants: striking a balance between reactivity and stability, J. Am. Chem. Soc. 134 (20) (2012) 8306–8309. [21] ASTM. Standard Specification for Aviation Turbine Fuels, ASTM D1655. West Conshohocken, PA: ASTM International, 2018. [22] N. Jiaorong, J. Tinghao, P. Lun, Z. Xiangwen, Z. JiJun, Development of High-Energy-Density Liquid Aerospace Fuel: A Perspective. Trans. Tianjin Univ. (2022) (1)1–5. [23] X.W. Zhang, L. Pan, L. Wang, J.J. Zou, Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids, Chem. Eng. Sci. 180 (2018) 95–125. [24] G.Y. Li, B.L. Hou, A.Q. Wang, X.L. Xin, Y. Cong, X.D. Wang, N. Li, T. Zhang, Making JP-10 superfuel affordable with a lignocellulosic platform compound, Angewandte Chemie Int. Ed. 58 (35) (2019) 12154–12158. [25] T. Jia, L. Pan, X. Wang, J. Xie, S. Gong, Y. Fang, H.Liu, X.W.Zhang, J.J.Zou, Mechanistic insights into the thermal oxidative deposition of C10 hydrocarbon fuels. Fuel 285 (2021) 119136. [26] Q. Liu, L. Pan, T.H. Jia, X.W. Zhang, J.J. Zou, Alkyl-adamantane as high-density endothermic fuel: synthesis and thermal cracking performance, Fuel 324 (2022) 124688. [27] T. Jia, Q. Liu, J.J. Zou, X. Zhang, L. Pan,The dynamics and mechanism of JP-10 thermal oxidative deposition, Fuel 321 (2022) 124093. [28] Z. Haocui, X. Zhourong, Y. Mei, Z. Jijun, L. Guozhu, Z. Xiangwen, Highly dispersible cerium-oxide modified Ni/SBA-15 for steam reforming of bio-mass based JP10. Chin. J. Chem. Eng. (2022) (3)255–265. [29] E. Klein, V. Lukeš, DFT B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action, J. Phys. Chem. A 110 (2006) 12312-12320. [30] S. Zabarnick, D.K. Phelps, Density functional theory calculations of the energetics and kinetics of jet fuel autoxidation reactions, Energy Fuels 20 (2) (2006) 488–497. [31] J. Pfaendtner, L.J. Broadbelt, Elucidation of structure-reactivity relationships in hindered phenols via quantum chemistry and transition state theory, Chem. Eng. Sci. 62 (2007) 5232-5239. [32] J.Y. Li, H.X. Liu, H.X. Yu, Z.Y. Wang, L.S. Wang, Thermodynamic properties for polybrominated dibenzothiophenes by density functional theory, Chin. J. Chem. Eng. 17 (6) (2009) 999–1008. [33] C.M. Parks, E. Alborzi, S.G. Blakey, A.J.H.M. Meijer, M. Pourkashanian, Density functional theory calculations on copper-mediated peroxide decomposition reactions. Implications for jet fuel autoxidation, Energy Fuels 34 (2020) 7439-7447. [34] E. Alborzi, C.M. Parks, P. Gadsby, A. Sheikhansari, S.G. Blakey, M. Pourkashanian, Effect of reactive sulfur removal by activated carbon on aviation fuel thermal stability, Energy Fuels 34 (2020) 6780-6790. [35] L. Wang, J.J. Zou, X.W. Zhang, L. Wang, Isomerization of tetrahydrodicyclopentadiene using ionic liquid: green alternative for Jet Propellant-10 and adamantane, Fuel 91 (1) (2012) 164–169. [36] A. Ben Amara, A. Nicolle, M. Alves-Fortunato, N. Jeuland, Toward predictive modeling of petroleum and biobased fuel stability: kinetics of methyl oleate/n-dodecane autoxidation, Energy Fuels 27 (10) (2013) 6125–6133. [37] T. Jia, L. Pan, S. Gong, J. Xie, X. Wang, Y. Fang, J.J.Zou,X.W. Zhang, Mechanistic insights into the thermal deposition of highly thermal-stable jet fuel, Fuel 276 (2020) 118100. [38] ASTM, Standard Test Method for Thermal Oxidation Stability of Aviation Turbine Fuels, ASTM D3241,West Conshohocken, PA: ASTM International,2014. [39] S. Zabarnick, Z.J. West, A. Arts, M. Griesenbrock, P. Wrzesinski, Studies of the impact of fuel deoxygenation on the formation of autoxidative deposits. Energy Fuels 34 (2020) 13814-13821. [40] S.P. Heneghan, S. Zabarnick, Oxidation of jet fuels and the formation of deposit, Fuel 73 (1) (1994) 35–43. [41] S. Zabarnick, Chemical kinetic modeling of jet fuel autoxidation and antioxidant chemistry, Ind. Eng. Chem. Res. 32 (1993) 1012-1017. [42] J.L. Hodgson, L.B. Roskop, M.S. Gordon, C.Y. Lin, M.L. Coote, Side reactions of nitroxide-mediated polymerization: N-O versus O-C cleavage of alkoxyamines, J. Phys. Chem. A 114 (38) (2010) 10458–10466. [43] J. Zhou, Y. Xiong, X. Liu, Evaluation of the oxidation stability of biodiesel stabilized with antioxidants using the Rancimat and PDSC methods, Fuel 188 (2017) 61–68. [44] F.M. Camargo, A. Della Bona, R.R. Moraes, C.R. Coutinho de Souza, L.F. Schneider. Influence of viscosity and amine content on C=C conversion and color stability of experimental composites, Dent. Mater. 31 (2015) e109-e115. |